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A detailed, rigorous study of the statistical mechanics--screening--and critical 
properties, phase diagrams, etc., of classical Coulomb monopole and dipole 
gases in two or more dimensions is presented. The statistical mechanics of the 
two-dimensional X Y  and Villain models is reconsidered and related to the one 
of two-dimensional lattice Coulomb gases. At low temperatures and moderate 
densities those gases behave like dipole gases. The Kosterlitz-Thouless transition 
is analyzed in that perspective and characterized by an order parameter. 
Techniques useful for a proof of existence of such a transition in a two- 
dimensional hard-core Coulomb gas are developed and applied to the study of 
dipole gases. 

KEY WORDS: Lattice; Coulomb and dipole gases; XY model; Kosterlitz- 
Thouless transition. 

1. INTRODUCTION 

Beginning with the work of Berezinski (0 and Kosterlitz and Thouless, (2) 
there have appeared numerous papers discussing the low-temperature 
behavior of the plane rotator and the Coulomb gas in two dimensions. 
There is a close connection between the rotator and the Coulomb gas made 
precise by VillainJ 3) Roughly speaking, vortex configurations of the rotator 
correspond to charges in the Coulomb gas. (See Sections 2 and 3 for a 
review.) At high temperature the rotator always has exponential clustering 
and the Coulomb gas exhibits Debye screening. (4) In the case of the 
two-dimensional rotator, the Mermin-Wagner theorem forbids a spontane- 
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ous magnetization; nevertheless there is presumed to be a temperature T c 
below which correlations have only a power falloff. For the Coulomb gas at 
low temperature and low activity one expects that there is a phase without 
screening. However, there is little that is rigorously known about either of 
these two-dimensional models at low temperature. 

In two d imens ions  the Cou lomb po ten t ia l  is logar i thmic ,  
~_, (2~r)-lloglx]. The long-range nature of this potential has the important 
consequence that it makes the Coulomb gas "locally" neutral in the 
following sense: if the distance between a plus charge and the nearest 
negative charge is r, then the contribution of such a configuration to the 
partition function is e x p -  (fl/2~r)logr. Moreover, there is a contribution 
from the entropy which is ~ r  3. (One factor of r a comes from choosing the 
position of the first charge and a factor of r comes from choosing the 
position of the second charge.) If fl > 8~r note that 

f e -~ B/z~) ~Ogrr3 dr < oe 

hence the total contributions of long dipoles is suppressed. (See Section 5.) 
Thus a natural starting point for the study of the two-dimensional Coulomb 
gas for large fl and small fugacity is the study of dipole gases. 

This article is primarily devoted to a detailed analysis of dipole gases 
in two and three dimensions. For dipoles of fixed length and with a hard 
core we show that there is no screening, provided that the fugacity is small. 
More precisely, we show that the charge correlations and the infinitesimal 
dipole correlations have a power law decay. In two dimensions we consider 
dipole gases in which the dipoles are allowed to assume a finite number of 
arbitrary lengths. The fractional charge correlation is shown to have a 
power law decay. 

In three or more dimensions we establish the existence of an ordered 
phase for large fugacity, provided the dipole potential has short range. This 
means that the dipole correlation has a long-range order. The model we 
analyze for this case allows dipoles to have a continuous orientation, but 
the centers of the dipoles lie on a fixed lattice. If the orientations of the 
dipoles are constrained to be discrete, we show that, for general dipole 
potentials, there is a crystalline phase in two dimensions, as well. The proof 
of this is based on a Peierls argument of the sort used in Refs. 5 and 6 to 
prove the existence of a crystalline state in the two-dimensional hard core 
Coulomb monopole gas at low temperatures and large activities. 

A key ingredient in the proof of our results is the sine-Gordon 
transformation. Let us consider a simple example, namely, the lattice 
Coulomb gas with hard core. Let dltac be the Gaussian measure with 
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covariance tiC, 

and define 

C(x, y) = ( -  A)- '(x, y) 

Uo(x,q) = C(x,,xAq,r 
l < i < j < n  

The transformation for the partition function in a box A is 

= f E IX zrqJleiqJ~ d#Bc(O) 
qj=O, +- 1 j E A  

~n zn E '  E e-BU'(x'q) 
= -~" xi qj=++-I 

The sum ~ '  ranges over xj r xi. 
Similarly the partition function of the lattice dipole gas with discrete 

orientation is given by 

Here e 0 is the lattice 41W and l denotes the length of the dipoles. We use 
this representation together with Mermin-Wagner type (7'8) methods to 
establish upper bounds on fractional charge correlations and lower bounds 
on (a correlations in momentum space. However, if z is not small, notice 
that the resulting measure in q, space is not positive and our estimates break 
down when applied to (1.1). For this reason, in two dimensions it is helpful 
to go to a modified representation in which (1.1) is replaced by 

with 

[~1 < constlzle-fl(l~ l)/2r 

and 6q, is defined in Section 5. The identity between (I.1) and (1.2) is 
obtained by using a mixture of the q, and charge q representations. Since 

and q are dual variables, our analysis can be thought of as a phase space 
analysis in function space. 

Let us consider the fractional charge correlation, 

(e ia ' [~(0) -- ~b(X) ] )~b (1.3) 
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in some more detail. We shall show in two dimensions that, for both the 
Coulomb and dipole expectations, (1.3) is bounded below by Ixl- W2  for 
all activities z/> 0. This bound is a consequence of Jensen's inequality. Of 
course for small/3 we know that the truncated correlation in the Coulomb 
gas clusters exponentially [4]. This means that the truncation must be 
nontrivial, i.e., 

(e ia~(0) ) ~ 0 

Thus (e i"~(~ should be regarded as an order parameter for the Coulomb 
or sine-Gordon models, and we shall see that the role of boundary 
conditions is crucial. Our aim is to show that if 13 is large (e i~t~(~ 
goes to zero for large x. Thus far we have only succeeded in proving this for 
dipole systems, but we believe that our technique will enable us to eventu- 
ally extend the result to the Coulomb case. The technique is to expand the 
Coulomb gas in terms of gases of neutral multipoles by means of some sort 
of "block spin" transformations. It is important to note that by the above 
arguments we have reduced the proof of existence of such a phase transi- 
tion to proving an upper bound on a correlation function, as opposed to the 
more difficult proofs of lower bounds. Moreover, the fractional charge 
correlation is extremely useful in the analysis of the Coulomb gas in two 
dimensions, because it really looks like a charge-charge correlation in a sea 
of dipoles. An integral charge in a Coulomb gas would tend to pair with an 
opposite charge and thus the correlation would behave like a dipole-dipole 
correlation in a sea of dipoles, which requires a much more subtle analysis. 

We conclude this introduction with a short summary of the different 
sections of this paper: our main new results are in Sections 4, 5, and 7, but 
see also Section 6. 

In Section 2 we review the sine-Gordon (or Siegert) transformation, 
i.e., the passage from the q to the ~ representation, in a form convenient for 
our purposes. We also recall integration by parts on function space, in the e~ 
representation, which is important for later sections. Another piece of 
abstract formalism, reflection positivity (in the ~ and q representations), is 
reviewed in Appendix A. It is applied to establish an analog of superstabil- 
ity estimates (the chessboard estimates) for classical Coulomb systems and 
infrared bounds used to prove the existence of phase transitions with order 
parameter (see Sections 4 and 7). 

In Section 3 we review the main rigorous results on the two- 
dimensional rotator and Villain models (Theorems 3.1-3.5) and describe 
the Kosterlitz-Thouless transition (Conjectures 3.2 and 3.2v). For compari- 
son, some rigorous, partly new results on general N-vector models, N > 2, 
are quoted [(3.18)-(3.19)]. The duality (Fourier) transformation of the 
rotator and Villain model is recalled (Theorem 3.6), and the isomorphism 
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between Villain model and Coulomb gas is described. That Coulomb gas is 
shown to be a limiting ensemble of a family of Coulomb gas ensembles 
labeled by an activity, z, as z ~ oo (Section 3.3, Theorem 3.8). 

In Section 4, classical Coulomb gases in different ensembles are 
studied in some detail. In Section 4.1, the screening properties, the inverse 
correlation length (mass), convexity, and decay properties of the charge 
two-point correlation and the phase diagram (existence of ordered states) of 
those Coulomb gases are discussed. The main results are summarized in 
Theorems 4.1-4.5. In Section 4.2, we specialize to the two-dimensional 
Coulomb gas. We give several different characterizations of the Kosterlitz- 
Thouless transition and discuss its relation to the roughening transition. 
This complements the discussion of that transition for the rotator and 
Villain model in Sections 3.1 and 3.2. 

In Section 5 we study the behavior of the fractional charge correlation 
and the expectation value of the disorder parameter in several different 
two-dimensional dipole gases, in particular in a gas of dipoles of various 
lengths that mimicks the two-dimensional hard core Coulomb gas at low 
density (z small) and low temperature. We prove upper and lower bounds 
with power law decay. A method for renormalizing the dipole activities, 
based on estimating dipole self-energies and replacing dipoles by neutral 
multipoles of larger size, is developed, and its workings demonstrated. That 
method combined with complex translations of the ~ variables in the 
functional integral expressing the fractional charge correlation in the 
representation yields our main decay estimates on that correlation. In 
Appendix B an alternate (purely electrostatic) method for renormalizing the 
activities of neutral dipoles is sketched. The emphasis in Section 5 is placed 
on concepts and analytical tools rather than on optimal results. We believe 
that the techniques of Section 5 will eventually permit us to prove conver- 
gence of an expansion of the two-dimensional Coulomb gas in terms of 
neutral multipole configurations, at low density and low temperature, 
designed to imply the existence of the Kosterlitz-Thouless transition. But 
the required combinatorial and refined electrostatic estimates are still 
missing. 

In Section 6 we establish absence of screening in general dipole gases, 
in the unordered phase (Theorem 6.1, Applications 1,2). Our main tool is a 
generalized version of the Mermim or Goldstone theorem (Theorem 6.3). 
The basic reason why the "Goldstone theorem" applies and there is no 
screening lies in the fact that dipole gases have a spontaneously broken, 
continuous symmetry, r ~ r + const, manifest in the q~ representation. We 
also use our version of Mermin's theorem to prove mean field lower bounds 
on the magnetization in continuous spin lattice systems (Section 6, Applica- 
tion 4). 
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In Section 7 we study a general class of lattice dipole potentials, 
estimate Madelung constants, i.e., energies of periodic dipole configura- 
tions, analyze the ground-state configurations, and prove infrared bounds 
on the truncated dipole-dipole correlation in momentum space. All this 
serves to establish the existence of phase transitions with order parameter 
and of ordered states (oppositely oriented, infinite chains of aligned di- 
poles) at high density and low temperature, for various classes of hard core 
dipole gases. Depending on dimension and dipole ensemble we use the 
infrared bound method (p/> 3, short-range dipole potentials, orientation of 
dipoles continuous) or the Peierls chessboard method (~ >/2, long-range 
dipole potentials, dipole orientation discrete). The material in Section 7 is 
rather intricate, and we recommend that, in a first reading, only the main 
definitions and results be studied. 

2. THE SINE-GORDON OR SIEGERT TRANSFORMATION(9'~~ 
FOURIER TRANSFORMATION IN THE CHARGE VARIABLES 

In this section we review a well-known formulation of the statistical 
mechanics of classical gases of particles interacting through two-body 
potentials of positive type in terms of Gaussian integrals: via functional 
Fourier transformation the charges of classical particles are traded for 
conjugate variables. This formalism has proven to be very useful; see, e.g., 
Refs. 4, 10, and 11. It is a basic tool of the present paper, as well 
(permitting localization in "phase space"). We then recall correlation in- 
equalities of Ref. 11, and integration by parts on function space, (~2) and we 
give a preview of applications. In an appendix to Section 2 (Appendix A) 
we review reflection positivity. (13'6) 

2.1. Functional Integrals and Statistical Mechanics, Inequalities 

Let C be the configuration space of one classical extended or point 
particle. In this paper C will usually be a lattice, E, in particular C = Z~, but 
for later purposes (see, e.g., Sections 6 and 7) we admit the possibility that 
C = R ~. Points in C are denoted x, y , . . . ,  and dx is the counting measure 
on ~ if C = ~, or the Lebesgue measure on R ~ if C = ~ .  

Let ~ C C be some lattice and let (Ax}x~ ~ be a cover of C by disjoint 
hypercubes (squares for u = 2, cubes for u = 3 . . . .  ) with sides parallel to 
the axes of ~ and centered at the sites of ~. The possible positions of one 
classical particle are identified with the sites of ~. 

Let Q0 be some measurable space of distributions, P0, with support 
inside ~o. Let d?~ be some measure on Qo. Given a distribution O0 E Q0, we 
define px by 

Ox(Y) = Po(Y - x )  (2.1) 
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Clearly supp Px C A .  We define Qx to be the space of all distributions & 
obeying (2.1) for some P0 ~ Q0, and 

d~x (Ox) ~ dX(&) = d~(po) (2.2) 

A distribution & E Qx is interpreted as the charge distribution of a classical 
particle located at x. The measure d~ x assigns an a priori weight to each 
charge distribution. 

Next, let C(x, y) be the kernel of a positive (semi-)definite quadratic 
form, C, on L2(G dx). We assume throughout this paper that 

C(x, y) is real-valued and continuous in x andy .  (2.3) 

Let Q(C)c_ L2(Gdx) denote the quadratic form domain of C, and 
%ec the closure of Q(C) in the scalar product 

( f ,  g)ec = fl(f, Cg)L2(e,ax) (2.4) 

f, g in Q(C). 
Subsequently, fl is interpreted as the inverse temperature, and C(x, y) is 

the potential between two point particles of charge 1, located at x or y.  
Let ~ = ~(x) be the Gaussian process with mean 0 and covariance tiC 

indexed by %Bc. The distribution of q~ is the Gaussian measure 

=- d ec 

with mean 0 and covariance tiC. 
The expectation in d/z is denoted ( - ) ~ c .  By definition 

( ~ ( f ) ) e c  = O, (q~(f)q~(g))ec = (f, g)ec, (2.5) 

where if(f) = fcq~(x)f(x)dx, and f is a test function (e.g., Schwartz space 
function) on G. By power series expansion one finds, using (2.5), 

(2.6) (e i~'~f))13c = exp[ - �89 ( f ,  f)ec] 
Wick ordering is defined by 

: eieP(f) : BC -~ eiqKf)( eiq~(f))fl 1 (2.7) 

We now suppose that Px ~ %~c, for all Ox E Q~ and all x E s Then 
Eqs. (2.6) and (2.7) make sense for f =  Y.xEe P~,Px E Qx, ox = 0 except for 
finitely many x. From those equations follows the lemma below. 

L e m m a  2.1 

(heiee(vxJ)l =exp[-(18/2) k(px,,Cpxj) ] 
j= l I I~c i4=1 

( jOl : ei~'(%) : BC ) Bc = eXp [ -- iQ l <. i~< j < n ( px? Cpx) ] 

(2.8) 

(2.9) 
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We notice that the right-hand side of (2.8) is the Gibbs factor of n 
classical particles located at points x~ . . . . .  x n in ~ with charge distribu- 
tions t)~, . . . .  Px,, interacting through two-body forces with potential C(x, 
y). In (2.8) the self-energies of these particles are included; in (2.9) they are 
omitted. 

Next, we define functions 

= f dX p e ie~(~ ), ~ (2.10) F(,~) jQ~ (x) x x e 

of the Gaussian process ~,. 
Note that F ( ~ )  is localized in the hypercube A [i.e., if ~(.) and ~'( .)  

are two samples in the support of dltr with ~(y) = e/(y), for y E A~, then 
F(q~) = F(q~,)]. Moreover F(qx) is obtained from F(q~)= fQodh(oo)e i~'(~176 
by the substitution eo(y)-->eOx(y ) = eo(y- x). This follows from (2.1) and 
(2.2). We set 

FA(~) = H F(~,) ,  
x E A  

where A is a finite subset of 6, and introduce the measure 

< F~);~VA(~,)d~e ~ (~). (2.11) 

Expectation in this measure is denoted ( )(/3; F). 

Lemma 2.2. Let A be a bounded region in ~. Then 

Za(/3;F)-(Fa)ac=f H dX(&)exp[-(fl/2) ~ (py, Cpy,)] 
x ~ A  y, y E A  

(2.12) 

f l  ei~'{ax)) = Y-A(/3; F ) - ' f  1-1 dX(p~,) i=l a ( f i ; F )  xEA 

y ~ A  J 

Clearly, "~A(fl; F)  is the partition function, and (Ilni=leir F) the 
correlation functions of a system of classical particles in the region A with 
charge distributions 0x ~ Qx and interaction potential C(x, y), at inverse 
temperature/3. The expectation ( . )A( /3 ;  F)  is the equilibrium expectation. 
Lemma 2.2 is a direct consequence of Lemma 2.1; see also Refs. 9 and 10. 
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Next, suppose that A (p) is a function on rlx~A Qx" We define 

(A>A(fl;F)= za(B; F)-~f x~IIAaX(~ 

•  E (oy, Co/)]A(P) 
y,y' ~A 

=<~>~,(;[ n~x,ei~ } ~.,,, 
x ~A tiC 

and (2.14) follows from Lemma 2.1 and Fubini's theorem (provided dh is a 
finite measure). The expectation 

(OxOy)A(fi;F) [i.e., A(p)=OxOy] 

is called charge two-point correlation. 
Next, we consider the case where 

dX(Ox) = a)t( - Px) (2.15) 

(2.15) is a neutrality condition expressing charge conjugation invariance. 

Lemma 2.3. 
Then 

for arbitrary A. 

Proof. 

Assume that d)t satisfy the neutrality condition (2.15). 

<n /~ 
i-I eiq'(px) l ( fl; F ) >/ l-[ ei4"(o.,) I 

i=1 / A  \ i = 1  Iflc 

By Lemma 2.2, (2.14), and Jensen's inequality, 

/ n ) 
I-[ eiq'(fix') ( fl; F)  

\ i = 1  A 

 expl 
y ~ A  A 

• ] 

By (2.14) and (2.15), 

( ~ea(oy'C&))x(B;F)=O for a l l i = l , . . . , n  
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Finally 

exp[- (~/2)  ~ (px?CpxJ)]=( fieir = l i = 1 Bc 

Next, we consider two special ensembles. We suppose that dX is a 
probability measure, and z is a positive number. 

( Gnhc--General No-Hard-Core Ensemble) We set 

F ( ~ )  = exp[ z f  dX(o:,)coseo(O~)] 
L JQ~ .j 

(i) 

(2.16) 
( Ghc--General Hard Core Ensemble) 

F(epx ) = 1 + z(dX(o~) cos q'(Ox) (II) 
d Qx 

Since cos r  cos 4'(-P), these ensembles are automatically charge 
conjugation invariant. The interest in the (Gnhc) ensemble is motivated by 
the following theorem. 

Theorem 2.4. In the (Gnhc) ensemble (2.16), (I) (HT=jei*(~x,))A(/3, 
z) is monotone increasing in z and A and decreasing in/3C; (l~,(f)12>A(/3, z) 
is decreasing in z and A and increasing in tiC. 

Remark. As explained in Ref. 11, Theorem 2.4 serves to construct 
the thermodynamic limit, A---)~, and to derive monotonicity properties of 
critical temperatures, susceptibilities, etc. in z and C. 

It is shown in Ref. 11 that under suitable assumptions on Qx, dX, and 
C, the (Gnhc) ensemble has a continuum limit, ~ W. 

For a somewhat different treatment of the sine-Gordon transformation 
and complete proofs see Ref. 11. 

2,2. Monopo|e and Dipole Gases 

In this section we specialize to monopole and dipole gases. 
(M) For monopoles, 

Ox = {Sx(Y):q E R} 

with 

8~(y) = { 6~,. if e = 
, ( x  - y )  if = R (2.17) 

The measure dX on Q is induced by a measure on the real line which we 
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also denote by d)t. A typical example for d?t is 

dYe(q) = [ m~TlE Cmd(q-m)ldq (2.18) 

where (c,~) is a bounded sequence of nonnegative numbers. 
We distinguish three different ensembles: 
(Mnhc), the grand canonical ensemble for monopoles without hard 

cores obtained from Eqs. (2.11) and (2.16), (I) by setting 

F(~x) = exp [ z cos ~(x) ] (2.19) 

i.e., d?t(px) assigns weight 0 to all distributions Px E Qx, except px = 8x. The 
equilibrium expectation ( - )h ( f l ;  F) is now denoted ( . )A(f l ,  z). By Theo- 
rem 2.4, (-)A(/3, z) has a thermodynamic limit, ( - ) (  t3, z). The parameter z 
is interpreted as the activity of a monopole. The continuum limit of the 
(Mnhc) ensemble is discussed in Refs. 10 and 11. 

(Mhc), the grand canonical ensemble for monopoles with hard cores 
obtained from (2.11) and (2.16), (II) by setting 

F(q,x) = 1 + z cos  e (x) (2 .20)  

The equilibrium expectation is denoted by ( �9 )he(/3, z). Each site x E ~ can 
be occupied by at most one monopole of charge + 1 and activity z. 

(Mg), a general equilibrium ensemble for monopoles obtained from 
(2.11) by setting 

r(+x) = fRdX(q) e ~qo(x) (2.21) 

The (Mhc) and (Mg) ensembles generally do not have a well-defined 
continuum limit, and their phase diagrams are more complicated than the 
one of the (Mnhc) ensemble. The phase diagram of the (Mhc) ensemble has 
the following features: (i) For small/3, z not too large, and C the Coulomb 
potential, the equilibrium expectation is unique, and there is exponential 
Debye screening. (4) (ii) For some class of reflection positive (RP) 
translation-invariant potentials C, z -- O(e ~/2c(~ and/3 large, one encoun- 
ters the formation of a ladder crystal as shown in Ref. 6, see also Section 4. 
(iii) It is expected that in two dimensions, with C the Coulomb potential, 
there is a dilute, translation-invariant low-temperature phase where screen- 
ing breaks down (formation of dipoles), for /3 large and z = O(1). This 
phase is characterized in Sections 3 and 4. We hope to prove its existence 
predicted in Refs. 1 and 2 in a future paper. 

The phase diagram of the (Mnhc) ensemble is simpler in so far as (ii) is 
absent. The (Mg) ensemble interpolates between (Mhc) and (Mnhc). In the 
study of (iii) dipole gases play an important role. 

We define analogous ensembles for the dipole gases. 
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(D) For dipoles, 

(q(~x+r --Sx), r ~ k 0 C G ,  q E R  
Qx = [ (q .  3)3]x, q ~ a" if e = N ~ (2.22) 

where in the second case 

(q '~)  = k q"(3/3x~) (2.23) 

and it is assumed then that (AxC)(x, y) is continuous in x and y. 
The measure dh on Q~ is induced by, respectively, a measure d)~(q, r) 

on N • A o, a measure dX(q) on R', e.g., d)t(q) = 8(Iq] 2 - 1)d~q. We set 

(3~,)(x) = , ( x  + r) - ~(x) (2.24) 

The (Dnhc) and (Dhc) grand canonical ensembles are then defined as in 
(2.16), (I), (II), in perfect analogy to the (Mnhc) and (Mhc) ensembles. An 
example for a (Dg) ensemble is 

= _ (d;k(q)ei[(q �9 a)*l(x), x E F(q~x) (2.25) 
.tR 

(")a(/3; F) = (Fx)~cl( - Fa)Bc with F A = (2.26) 1-I F(~x) 
x~Ac~ 

see (2.11) and Lemma 2.2. 
The phase diagrams of dipole gases are somewhat simpler than the one 

of monopole gases: if C is the Coulomb potential the dipole gases have no 
phase with Debye screening, a new result which we prove in Sections 5 and 
6 by using the ~ representation (sine-Gordon transformation) to exhibit a 
spontaneously broken, continuous symmetry: q ~  + const. The (Dhc) 
and (Dg) ensembles have generally an interesting low-temperature phase: 
for large density, z = O(e (~/2)c(~ and/3 < < 1, and ordered (crystalline) 
equilibrium state appears, for general distributions d~(q) on R ~, including 
rotation-invariant ones (v > 3) (when v = 2,dX must be assumed to be 
discrete). This result is proven in Section 7. 

2.3. Integration by Parts Formula 

In this section we recall a standard integration by parts formula. (13) 
Let ~ be the Gaussian process determined by 

( ~ , ( x ) ) ~ c  = 0, (ep(x)ee(y))~c = tiC(x, y) 

Let F be some measurable function of ~(.). Then 

( , ( x )F)pc= f i~dyC(x ,  y ) (  3F (2.27) 
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and consequently 

(+(x)q,(y)F)e c = tiC(x, y)(F)e c 

+ e= f f azaz, c(x,z)c(y,z,)( 32F )(2.28) ~,(z)O~,(z') ~c 

The proof of (2.27) and (2.28) is standard: one approximates the Gaussian 
functional integral by a finite-dimensional Gaussian integral for which 
(2.27) and (2.28) are the standard integration by parts formulas. For details 
see, e.g., Ref. 12. 

Next, let F = F a be the multiplicative functional (2.21) defining the 
monopole ensemble (Mg). Then Eq. (2.28) gives 

(@(x)qa(y)>a( ,8; F)  = (FA>;c~($(x)@(y)FA)Bc 

= tC(x,  y) - t i2 f fC(x , z )C(y , z , )  (2.29) 

[ f  u~Ad~(qu)qzqz'(v~Aeiq~ 

= C(x, y ) _ t i 2 f  f C(x,z)C(y,z,)(qzq~,)a( ti; F)dz dz' 

and we have used (2.21) and (2.14). 
Here (qzqz')a( ti; F) is the usual charge-charge correlation (two-point) 

function. 
By smearing out both sides of (2.29) we get 

(le~(f)12)a( ti; F )  = ti(f ,  Cf) - ti2(l(C * q)(f)lZ)a( ti; F) 

in particular, 

(Iq,(f)12)A( ti; F)  < fl(f, Cf) 

Moreover, we conclude from (2.29) that 

(I(C* q)(f)12)A(ti; F) <~ 18 -~(f, Cf) (2.30) 

provided (Iq,(f)t2)A(B;F)>/0 for which it suffices that F(eOx)> 0 (e.g., 
0 < z < 1 in the (Mhc) ensemble). 

If C and ( . )A( t i ;  F) are translation invariant [e.g., ( . )A=e( t i ;  F) a 
translation-invariant thermodynamic limit, or periodic boundary conditions 
at OA] then we obtain from (2.30) by Fourier transformation 

(q (k)q ( - k)>A( ti, F)  < [ tiC(k) ] -] (2.31) 
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We now specialize to the (Mnhc) and (Mhc) ensembles. Let 

[(cos 0(u))A( ti, z) for (Mnhc) 

= ~ /  cos~(u) \ 
K#,~(u) ~ l - 1 T ~  I ( ti'z) for(Mhc) 

and 

Then 

S(x) = 

sin 4~(x) for (Mnhc) 

sin~(x) 

1 + ~ cos~(x) 

<(,(x)~(y)>(ti, z) = tiC(x, y) - ti2z f du C(x, u)C(y, u)KB,z (u) 

+ ti2z2ff dud ' C(x, u)C(y, 

• <s(.)S(u')>A(ti, ~) 

= tiC(x,y) - fl2((C*q)(x)(C*q)(y))a(ti, z) (2.32) 

i.e., in the translation-invariant case 

(]S(k)[2)A(ti, z) = (1/z)Ke, z (0) - (1/z2)(l~(k)12)A(ti, z) (2.33) 

and 

(l~,(f)f>A(ti, z) >/ti(f, f f )  - ti2zK/3,z(O)(f, f2 f )  (2.34) 

Equations (2.32) and (2.33) are useful in the discussion of Debye screening 
(sum rules and upper bound on physical mass) and of absence of long- and 
short-range order in (qxqy)( t ,  z). See Section 4.1. 

Of course, the same identities can be applied to dipole gases: for the 
(Dg) ensemble on a lattice ~ one finds in the translation-invariant case 

<(0,~) �9 (x)(0~)(y)>(/3; F)  =/3( - AC)(x - y) 

_ ti2 ~ . < q i ( x ) q j ( z ) )  ( t i ;  F )  WiJ(z  - y )  (2.35) 
z;t,j 

with Wq(x) = OiOJhC * C)(x) the dipole potential. The second term on the 
right-hand side of (2.35) is positive definite. When a i, ~ are finite difference 
derivatives, and C is the Green's function of the finite difference La- 
placean this yields 

<(3$)(x)(0q))(y))( t ,  F) = fldxy - t2  ~.<q,(x)qj(z)>( t;  F) w~J(z - y) 
z;t,1 

where Wg(z - y )  is the usual lattice dipole potential. 
As in the (M) ensembles one may finally apply integration by parts on 

function space in order to prove an identity analogous to (2.32) which 
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yields an inequality analogous to (2.34), namely, 

([q,(f)t 2) > fl(f, Cf) - /32z (  d~(q,r)q2K(r; fl, z)(f,(d~C)2f) 
JR X ~o 

where, in the translation-invariant case, 

z) 
K(r; /3,z) = ~ / cos(BAh)(0) 

(2.36) 

for (Dnhc) 

( z )  (Dhc) /3, for 

Inequality (2.36) together with obvious bounds on K(r; fl, z) provide 
an easy proof of the absence of screening in dipole gases for fl < O(1/z): 
by a chessboard estimate (14) one can show that 

[K(r; fi, z)l < Cl e-czfll~ 

for some positive constants el, c 2, and 0 < z < 1 in the (Dhc) case. This 
combined with (2.36) yields absence of screening for/3 < const 1/z  and for 
/3 sufficiently large, depending on z. In Sections 5 and 6 we devise much 
stronger methods which prove absence of screening for all fl and z and 
yield more explicit information. 

Finally, we wish to draw attention to the following upper bound on the 
dipole-dipole correlation which follows from a somewhat different form of 
the sine-Gordon transformation, used, e.g., in Ref. 11, by means of integra- 
tion by parts: suppose that F(e?) > 0 [i.e., z < 1 in the (Dhc) ensemble]. 
Then 

(q( f )q(f))A( /3; F) <~ /3 -l(f ,  W -  if) (2.37) 

where 

q ( n :  +~ 
j E A a = I  

and W is the dipole-dipole potential. 
For other application of integration by parts see Section 4. In Appen- 

dix A we review the concept of reflection positivity which plays a basic role 
in Sections 3, 4, and 7. That appendix may be skipped in a first reading. 

3. CONNECTIONS BETWEEN THE CLASSICAL ROTATOR (XY) 
MODEL, THE VILLAIN MODEL, AND COULOMB GASES 

3.1. The Classical X Y  Model: A Review 

The rotator or classical XY model is the following classical lattice spin 
system: 

We choose E = Z ~, v = 2,3(4 . . . .  ). To each site x E E we assign a 



632 Fr6hlich and Spencer 

two-component unit vector, Sx, interpreted as a "classical spin." 

S,, = ( S  x, S2~=(c~ / O~ ~ [0,2~r] (3,1) 

Clearly 

S x �9 Sy = cos(0 x - Oy ) = Re[ ei(~ 1 (3.2) 

The a priori distribution of S~ is the uniform measure on the circle, i.e., 
dOJ2~r. The classical Hamilton function of the system constrained to a 
bounded region A c E is defined by 

HA -- H ( O A ) =  - E s ~ . s y  - h E S'x 
x y c A  x ~ A  

= -  • cos(0 x - 0 y ) - h  ~, cos0 x (3.3) 
x y c A  x E A  

where xy are nearest neighbors, and h is an external magnetic field. 
The equilibrium state at inverse temperature/3 is given by the measure 

ZA(fl, h)-'e-el4(~ I-[ (dOx/2Vr) (3.4) 
x ~ A  

where ZA(fl, h) is the partition function chosen such that the measure (3.4) 
is a probability measure. 

The expectation in this measure is denoted (.)xAr(/3, h), and 
( .)~Y(~) = <.  ) ~ ( ~ ,  h = 0). 

For a large class of boundary conditions (e.g., free, periodic . . . .  ) the 
thermodynamic limit 

(x~A Sfx ) x r (  fl, h) =12m e (x~Z S:~ )A ( fl, h) 

exists for arbitrary A c E and arbitrary { % =  1,2)xeA. For h ~ 0 ,  
( . )xr ( f l ,  h) is the unique translation-invariant equilibrium state of the 
rotator model O7) ; moreover, for all/3 for which limh_,O (Sxl)Xr(fl, h) = 0, 
( . ) x r ( f l )  is the unique translation-invariant equilibrium state. (~8) Thus, 
for/3 = 2, ( - ) x r ( f l )  is unique for all B < 0% by Mermin's theorem. (8) Let 

rn ( fl, h) = lim - (1/X) log(S o; Sx~) x Y( fl, h) (3.5) 
?t--~ oo 

where e is a unit lattice vector in 77 ~, and let 

X(fl, h ) =  Y~ / S  "S ,x r ,  \ o, x~ ~,/3, h) (3.6) 

Here 

(s0; Sx>"Y( /3, h) = (So-SY'Y(/3,h) -I(S0)"~(/3,h)l 2 (3.7) 
m(/3, h) is the inverse correlation length (=  mass) and X(/3, h) the suscepti- 
bility. If m( fl, h) > 0 then X(/3, h) < oe. 
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The following results are well known. 
(i) For real h ~ 0 m(/3,h) > O, and m(fl ,  h) = O(h) if rn(fl) =- rn(/3,0) 

= 0. Moreover m(fl ,  h) and m(f l )  are decreasing in t3. Therefore, defining 
fie by 

__tiff = inf( f l  : m ( f l )  = 0) (3.8) 

we have that 

m (/3 ) = 0 for all/3 >_flfl~ (3.9) 

(One sees by a standard high-temperature expansion that fl~ > 0, for all 
dimensions v.) For proofs see Ref. 19; see also Ref. 21, Theorem III.1. 

(ii) For v/> 3 there exists fl~ < ~ such that for/3 > 

lim ( S lx >Xr( /3, h) v a 0 (3.10) 
h-~0  

i.e., there exists a phase transition with order parameter at/3 = tic, and for 
fl >/3~ there is at least a full circle of pure phases and there exists a 
Goldstone excitation. If 

(So, sx)Xr(/3) ~ [xl -(~-2§ as I x [ ~  oo 

then 

For 

Finally, 

/> 0 (3.11) 

/ 3 > / ~ ,  m ( f l ) = 0  and X ( / 3 ) = o o  (3.12) 

/~ ~>~c (3.13) 

These results are proven in Ref. 20. (For v = 2, /~c = oo, by Mermin's 
theorem.) 

(iii) As noted in Ref. 21, the Lebowitz inequalities 

(Sx~, 'S~;S~'Sf f , )xr( f l ) ,  x3, < 0, a = 1,2 (3.14) 

and the inequalities 

( S 1 S  l . 2 2 "xY x, x2,S;3S;,) (/3) "<< 0 (3.15) 

(proven in Refs. 22 and 23) together with Ginibre's inequalities (24) permit 
one to extend a remarkable result for the Ising model due to Glimm and 
Jaffe (24) to the classical X Y  model: 

T h e o r e m  3.1.  For fl > / 3  c, m( /3 )  = 0, 

lim m ( fl ) = 0, lim X(/3 ) = 
B't/~c /~l"Bc 
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For v >/3, the expectation 

( >xr( fl ~ = lim ( >xr(/3) 

is clustering (i.e., es 

Remarks. As pointed out by Glimm and Jaffe (2s) (see also Refs. 26 
and 27) Theorem 3.1 proves the existence of a critical point and of a critical 
X Y  model with 0 mass, oo susceptibility, but no long-range order in v/> 3 
dimensions. Since limt~l,t~ ~ X(/3) = oo, T/(/3c) [see (3.11)] satisfies (27) 

0 < ~/(/3 ) < 2 (3.16) 

Simplifying somewhat one can say that, for h v s 0 or r >/3, the qualitative 
understanding of the classical X Y  model is quite perfect. New rigorous 
results must therefore be looked for at h = 0 in r = 2 dimensions 0' = 1 being 
trivial). Much of this paper has grown out of an attempt to prove the 
following conjecture. 

Conjecture 3.2 (see Refs. 1, 2, and 28). For ~ = 2, __tic < oo [so that 
m(f l )  = 0 for sufficiently large/3 < ~] .  

This conjecture would imply that the two-dimensional X Y  model has a 
phase transition without order parameter and an interval [ /3c, oo) of critical 
points. Although a complete proof of this conjecture has so far eluded our 
abilities, we hope that this paper uncovers some basic mechanisms (both 
physical and mathematical) that should, in principle, almost suffice to 
prove it. Of course, Conjecture 3.2 is predicted by physical reasoning (1,2) 
and renormalization group calculations328) A complete proof might shed 
new light on that method. Next, we recall an important inequality proved 
in Ref. 29. 

Theorem 3.3 (McBryan-Spencer Upper Bound). For arbitrary ~ > 0 
there exists a constant K, < oo such that the spin-spin correlation of the 
two-dimensional X Y  model satisfies 

and 

<s0. sx>xY(B) g,(1 + Ixl) 

Next, we state a lower bound for tic. 

Theorem 3.4. For the two-dimensional, classical X Y  model 

/3c> 0.67 (3.17) 

m (/3 ) > 0 for all/3 < 0.67 (3.18) 
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Remarks. (1) The proof follows from an improved version of Refs. 
30 and 31 and will be given elsewhere. We also remark that a straightfor- 
ward combination of Theorems 3.1 and 3.3 yields tic > 1/4~r, i.e., ~ 1 / 8  of 
the lower bound (3.17). The mean field bound is tic = 1/2. 

(2) The exact value of __tic is conjectured to be ~ 1, so that (3.17) is as 
accurate as can be expected from an expansion method (our proof of 
Theorem 3.4 involves an expansion in the spirit of Ref. 30; see also Ref. 
31). 

(3) Consider the N-vector (N-component, classical spin) models, N 
= 1,2,3 . . . . .  with Hamiltonian given by (3.3), and S ~ S ~ - l  (N = 1 is 
the Ising and N = 2 the classical X Y  model). In Ref. 16 we have proven 
that for v = 2 

mu(f l )  < q e x p [ - c 2 ( / 3 / N ) ]  (3.19) 

for some positive constants c~, c 2. Using methods of Ref. 30 we have been 
able to show that 

/3c(N) > N / 2 v  (3.20) 

Based on approximate calculations it has been conjectured that /3c(N ) 
= m, for v = 2 and N > 3; see Ref. 32. There is no proof of this! 

This concludes our list of rigorous results for the classical X Y  model. 
As noted in Ref. 3, it is useful to compare the two-dimensional X Y  

model with the two-dimensional Villain model, for which a proof of Conjec- 
ture 3.2 might be a little more accessible and which is isomorphic to a 
two-dimensional lattice Coulomb gas. Recall that for the X Y  model with 
h = 0  

e-~H(~ = I'[ e~C~176176 see (3.3) (3.21) 
xyCA 

The Villain model is obtained by replacing rB(O ) = exp[/3 cos0] in (3.21) 
and (3.4) by 

vp(O) = ~ e x p [ - ( f l / 2 ) ( O  + 2~rn) 2] 
nE7 /  

(3.22) 

When necessary we distinguish the X Y  and the Villain model by adding a 
superscript v when considering the Villain model. 

Note that v~(O - 0') is (up to a constant factor) the integral kernel of 
the operator exp[(1/2fl)A], where A is the Laplacean on S 1 (=  Laplacean 
on [0, 2~r] with periodic boundary conditions at 0 and 2~r). Thus, using the 
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Trotter product formula, 

2~r 27r N 

v a ( 0 - 0 ' ) =  lim C ( N , • ) f o  d O l . . ,  fo dO N I-IrBN(Oj--Oj+I) 
N--> o~ j = 0  

with 00 = 0 and ON+ 1 = 0'; see, e.g., Ref. 33. 
One may therefore view the Villain model as a limit of rotator models 

in which each link xy c 7/~ is occupied by N classical, two-component spins 
interacting with their nearest neighbors. This implies that the Ginibre 
inequalities ~24) hold for the Villain model, as noted by Bellissard. ~34) (There 
is an independent proof involving duality transformation; see Section 3.2.) 
Moreover, the Lee-Yang theorem, ~35) the Lebowitz inequalities (3.14), and 
inequality (3.15) ~22'z3) clearly remain true, as well. Finally, the method of 
proof of Theorem 3.3 (McBryan-Spencer upper bound) can also be applied 
to the Villain model. (In fact, the proof (29) of Theorem 3.3 for the Villain 
model is simpler, and one can set c = 0, K,= 0 = K in Theorem 3.3, as the 
reader easily checks. See also Section 5.) In conclusion, all results summa- 
rized for the two-dimensional, classical X Y  model, in particular (i) and (iii), 
extend to the two-dimensional Villain model. Among these we have the 
following theorem. 

Theorem 3.5. In the two-dimensional Villain model 

(ei(O~176 <. g ( l  + [x[) -(l/2r 

v 1 
m e ( fl ) > 0 for all fl <__tic with flv/> 

(see Ref. 27). As in the X Y  model we make the following conjecture. 

Conjecture 3.2t~ In the two-dimensional Villain model, _fl~ < oo. 

Remark.  Heuristic arguments based on comparing the dual (Fourier 
transformed) Villain model with the dual X Y  model (see Section 3.2) 
suggest that Conjecture 3.2 v implies Conjecture 3.2; see also Ref. 28. We do 
not elaborate on this point, but emphasize that the machinery developed in 
this paper for approximate Villain models can also be applied to approxi- 
mate X Y  models, so that the two conjectures ought to have closely related 
proofs. 

3.2. The Dual X Y  and Villain Models 

In this section we use Fourier transformation in the angles {0x} in 
order to replace the X Y  and Villain models in two dimensions by models of 
classical, one-component (Ising-type) spins with values in the integers. This 
is the well-known Kramers-Wannier duality transformation. We only 
present results. For proofs see Refs. 3 and 28. 
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Let P~(n), ~3a(n)= c ~ e x p [ - ( ~ ) n  2] denote the Fourier coefficients of 
the functions r~(8), c~(O), respectively. 

In two dimensions, define equilibrium expectations of the dual XY and 
the dual Villain model in a finite volume A (with 0 boundary conditions) 
by the following measures: 

dl~;(d?A)=[Z;A(fl)] -1 I I  P,a(~(x)-O(Y)) ~[ do[O(x)] (3.23) 
xycA x~A 

* ~(,A) = [ z~( B)] -~ II exp{ - (+) [ , (~ )  - , (y ) ]~)x~  aoE*(x)] 
xycA 

(3.24) 

where dp(q,)=[~, .~zS(e ~ -  m)]dep and Z~A(fl), Z~A(fl) are the obvious 
normalization factors. Let (" );A(fl), ~ - )~ ( f l )  denote the expectations 
determined by d# ;, d/~ ~, respectively. Let x be the site (n,0) = ne] E 7/~. We 
define 

. -1  fB ( 0 ( m ,  I) - -  0(m,0) + 2~rq) (3.25) 
A~(q;O,x) =,.~0II f-5(Z;-~7o~ 

where f~ = r~ or v~ arid q ~ (0, 1), and 

" - '  ~((h(m, 1) - g,(m,O) + k) (3.26) 
A~f (k ;O 'x )= m=O ~ ~ (q,(m, 1) - (~(m, 0)) 

where fB = r~ or ~3a and k E Z. 
Note that 

A V ( k; O,x) = ( ~=loeXp{ - ( 1 /  fl )[ q~(m, 1) - q~(m, O) ]k ) ) 

> e x p [ - ( ~ ) k 2 1 x l ]  (3.27) 

Let A ' =  A'(A) the region corresponding to A in the dual lattice. From 
Refs. 28 and 21 we have the following theorem. 

Theorem 3.6 

(1) (eik(O~ = (A;(k;O,X))A,(fl) 

(2) (~'~<~~ 

(3) 

(4) 

= m~oeXp(-(1/f l ) [q~(m,  1 ) -  ~ (m,0 ) ]k )  ~,(fl)e t 

<A r(q; o, X)>A(/~) ---- (exp( i2~ q[ q,(0) -- ,~(x) ] ) )~,( p ) 

(,A ~( q; O, x))~( fl ) = (exp( i2~rq[ q(O) - ep(x) 1) ) ~A'( fl ) 

- ( l/2fl)k2[xl] 



638 Frohllch and Spencer 

Remarks. For k = 1 one has of course 

( e i(Oo- o~) ) A( fl ) = ( So" S~)A( fl ) 

For q E 7/, ( e i2~rq[~(O)-~(x ) l )A , ( f l )  = 1. 
In principle, Theorem 3.6 can be extended to arbitrary correlation 

functions. This establishes an isomorphism between the X Y  model and the 
model defined in (3.23) and between the Villain model and the ~ model 
defined in (3.24), in two dimensions. 

Proof. The proof of Theorem 3.6 follows by Fourier transformation 
in the variables (0 x - Oy: xy nearest neighbors in A) and application of the 
lattice version of Poincar6's lemma, 

�9 0 �9 k = 0 ~ k - -  �9 O~ ( 3 . 2 8 )  

where k is a lattice 1-form (lattice vector field), and 0 is a lattice (~ - 2)- 
form. Thus, in ~ = 2 dimensions, ~ is a scalar, i.e., a function on the lattice. 
For 1, = 3, an analog of Theorem 3.6 holds: consider, e.g., the three- 
dimensional Villain model. In this case, ff is a lattice vector field, the 
components, O~y (xy nearest neighbors), take values in 7/. Thus the dual of 
the three-dimensional Villain model is an Abelian lattice gauge theory. 

Next, we discuss another version of Conjectures 3.2 and 3.2 v which 
involves the dual two-point correlations, i.e., the two-point functions of the 
P and ~3 model introduced in Theorem 3.6(3) and (4). Suppose fl is very 
small. Then one deduces from (3.23), (3.24), and the small-fl behavior of PB 
and ~3~ that, in the presence of 0 (---- free) boundary conditions at 3A, 

0 ,<< (g,(0)O(x))~v)(fl) < O ( e x p [ -  m(fl)lxl]) (3.29) 

and 

(eiq~'(~ < O ( e x p [ - m ( f l ) l x l ]  ) (3.30) 

uniformly in A, for all q E (0, 1). 
The proof is based on a straightforward Peierls contour expansion--in 

the style of Refs. 36 and 4, but much simpler. Incidentally, (3.29) implies 
(3.30) if the model satisfies F K G  inequalities, (37) which is obvious for the 13 
model. 

The Peierls contour expansion also shows that 

(eiq~(O));(~)( fl) >/ Mq( fl) > 0 (3.31) 

uniformly in A, for sufficiently small ft. (Related results and proofs may be 
found, e.g., in Ref. 4.) In the case of the 13 model, (3.31) also follows directly 
from (3.30) and the inequality 

( e iq[0(0) -- 9(x)l) ~( fl ) ~ IX I-- q2fl/2~r (3.32) 

for A and Ixl suitably large, which we prove in Section 3.3. 
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Thus, in the thermodynamic limit, (3.30) and (3.31) yield 

(eiq[e)(o)_r (eiq4,(o))~(6)(/3) 2> Mq(/3)2> 0 (3.33) 

as Ix[ ~ oo, for all/3 with 0 < /3  < Bf (~)- 
In Section 3.3 we shall see that this temperature range corresponds to 

one in the two-dimensional Coulomb gas in the (Mnhc) grand canonical 
ensemble (see Section 2.2) with exponential Debye screening. 

Now we consider the /3 >> 1 regime: for fl >> 1 the expectation 
( . ) v ( f l )  is, heuristically speaking, very close to the Gaussian expectation 
with mean 0 and covariance ( - A ) - i .  To see this, rescale 0 O q~' = / 3 - 1 / 2 0  
E / 3 - l / 2 E  and observe that d p ( / 3 l / 2 q ; ) o  dep (the Lebesgue measure), as 
/3 ~ co (on COO). For the Gaussian, ( . ) c ,  

( e iqfl '/2[q~'(O) - q~'(x) ]) C~ IX I- (3.34) 

as Ixl oo, in contrast  to (3.33). 
Thus we propose the following 

Conjecture 3.7. For the P and ~3 models t.1)ere exist critical tempera- 
tures 13 7 < oo, flZ < oo such that, for/3 > fl~(flv), 

(eiq[#'(O)-~(x)l)r(v)(/3)--YO as Ix[ ---> oo (3.35) 

Remarks. (1) Clearly Conjecture 3.7 is related to Conjectures 3.2 
and 3.2 v. We believe that a constructive proof of Conjecture 3.7 will also 
yield a proof of Conjectures 3.2 and 3.2 v and that flf =t ic ,  flZ =fl~, but 
there is no rigorous proof of these equations. See also Section 5. 

Conjecture 3.7 v appears to be somewhat easier to analyze than the 
"dual" Conjecture 3.2 v. Sections 4, 5, and 6 are devoted to working up 
some ideas and methods that should enable one to prove Conjecture 3.7 v(r) . 

(2) We emphasize that Conjecture 3.7 r(v) really says that the P03) 
model has a phase transition with order parameter: for fl < fl~(~), 

(eiqr176 /3) >/ Mq( fl) > 0 

whereas for fl > fl~(~) 

( e iq,(O) )~(,2)( /3 ) = 0 

by (3.35), i.e., (e;q*(~ (/3) is the order parameter. Phase transitions with 
order parameter often tend to be easier to handle than ones without. 

(3) The reader familiar with a recent paper of Mack and Petkova (38) 
should note that their modification of the SU(2) lattice gauge theory has an 
analog in the two-dimensional X Y  model. An adaptation of their estimates 
shows that, in the modified two- dimensional X Y model, (e  iql ~,(o) - ,(x) ] )( /3 ) 
-~0, as Ixl-~ oo, exponentially fast, for large enough/3 < ~ .  This is clearly 
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incompatible with (3.31) and suggests that the Mack-Petkova modification 
has a serious effect on the large-fl behavior of those lattice models. 

Next, we recall an isomorphism between the ~3 model and the two- 
dimensional lattice Coulomb gas [in an (Mg) ensemble; see Section 2.2]. 

Note that 

do(O) = [  m ~  ~ 8 ( 0 -  m)]d0 

=I E ei2~*q]dO, 
q ~  J 

(in distribution sense) by the Poisson summation formula. Clearly 

E ei2~rqq~ = feiq+dX(q) 
qEZ 

with 

(33 , 

We now recall that 0p(0)= exp[-(1/2fl)021, so that when do is replaced 
by dO, 0( ')  is a Gaussian process with mean 0 and covariance ( - A ) - i .  
Comparison with the definition of the (Mg) ensemble of Section 2.2, see 
(2.21)-(2.23), now exhibits the isomorphism. In the charge variables, qA 
= (qx} x EA, the equilibrium measure of the two-dimensional Villain model 
is given by 

ZA(fl)-lexp[-(fl/2)4~r2 ~ qxCA(X, y)qy I (3.37) 
x,y in A 

where CA(X, y) is the kernel of ( -  AA)- l, AA the finite difference Laplacean 
with 0-Dirichlet data at 0A, and Za(fl) is the partition function. The proof 
of (3.37) follows directly from (3.36) and (2.23). 

It is now clear that (e iq[r176 -r )v(fl) is a fractional charge two-point 
correlation, with q the fraction of the charge of the test particles and the 
charge of the background particles. 

3.3. Comparison of the ~ Model with the Two-Dimensional Coulomb 
Gas in the (Mnhc) Grand Canonical Ensemble 

We show here that the ~3 model is the z = oe limit of the two- 
dimensional Coulomb gas in the (Mnhc) grand canonical ensemble with 
equilibrium expectation ( �9 )~( fl, z) given by the measure 

NA(fl, z) - t  I-I exp(zc~ dp'r (3.38) 
x ~ A  
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which is obtained from the expectation ( .  >A( fi ', Z) with 0 ( -  free) bound- 
ary conditions at 0A, defined in (2.16) (I) by rescaling: O(x)-->O'(x) 
= 2~r(h(x), and setting 

fl' = 47r2fl (3.39) 

It is shown in Ref. I 1 [see also Theorem 2.4(2), Section 2.1] that 

( eiq[~'(O)-r A( fl, Z ) is monotone increasing inz and A -~. (3.40) 

As remarked in Section 2.1, monotonicity permits one to pass to the 
thermodynamic limit, A = Z 2, and conclude that (eiq[*(~ z) is 
monotone increasing in z. 

When A is bounded 

l i m  <eiqir176 z) = <eiq[ep(o)-~'(x)]>A(ti) (3.41) 

(2~rz)]/2e~[Co~(2~4,)- l]__> ~ 3(d? - m). 
mEZ 

since 

By (3.40) and (3.41), 

(eiq[O(O)-~(x)l>(~(ti) >/zlinl (eiq[~176162 z) (3.42) 

> ( e iq[~(O) - ~(x)] > ,( ti, Z) (3 .43)  

>/ ( eiq[q'(~ ti, z ---- O) 

--_- ( eiq[~(o)-~(x)]) ~ c 

= O(Ixl -q~B/:~) as ] x l ~  or (3.44) 

This proves inequality (3.32) of Section 3.2. Suppose now that Conjec- 
ture 3.7 v holds, i.e., for/3 > tiv with Bf finite, 

<eiqti~(O)-ee(x)]>v(ti)---)O as Ixl--) ~ 

By (3.43), this implies that, for/3 > tic(Z) with tic(z) < fir, for all z, 

(eiq[q'(~ as IXt ---) O0 

and 

< eiqC'(~ ti, z) ---- 0 (3.45) 

For /3 << 1 and z < ~ suitably large, Brydges has shown (4) that <eiqr176 
e-iq+(x) >,(fl, z) decays exponentially when I x l -~  ~ ,  provided ( .  >'(/3, z) is 
a 0-boundary condition thermodynamic limit. (In Section 4 we show that 
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this is false for the "Gaussian" boundary conditions considered in Sections 
2.1 and 2.2.) 

Brydges' result and (3.44) prove that, for fl << 1 and z < ~ suitably 
large, 

[( e iq~(O))t( 8, 2)1 > 0 (3.46) 

Thus we have the following theorem. 

Theorem 3.11. Suppose that Conjecture 3.W holds. Then, for all 
sufficiently large activities z, the two-dimensional Coulomb gas in the 
(Mnhc) grand canonical ensemble (with 0 boundary condition) has a phase 
transition with order parameter, (eiq*~~ z), from a high temperature 
(small t )  phase with Debye screening characterized by exponential cluster- 
ing and (3.46) to a low-temperature (dipolar) phase characterized by slow 
decay of the fractional charge two-point correlation and (3.45). Moreover 

tic(z) <<. flv for all z < ~ (3.47) 

Thus, a problem somewhat easier than a proof of Conjecture 3.7 ~ is to 
prove that for z > 0 small enough there exists fie(z) < ~ such that, for all 
fl > Be(z), (3.45) holds. We present arguments in the direction of a proof of 
this, based on relating, the two-dimensional Coulomb gas at low tempera- 
tures to a two-dimensional Coulomb-dipole gas for which (3.45) is relatively 
easy to prove. See Sections 4 and 5. Finally, we remark that the ? model 
can also be related to a Coulomb type gas which can be studied by the 
same methods as the (Mnhc) gas. 

4. THE STATISTICAL MECHANICS OF LATTICE COULOMB GASES 

In this section we review some rigorous results and prove new ones, all 
concerning the two- (and higher-) dimensional lattice Coulomb gas in the 
grand canonical ensembles [the (Mnhc) or (Mhc) ensemble introduced in 
Section 2.2]. 

4.1. On Screening Properties and the Phase Diagram of Coulomb 
Monopole Gases 

In the ~ representation the equilibrium expectations, ( . )A(f l ,  Z) and 
(.)~c(fl ,  z), of the (Mnhc) or (Mhc) ensemble are given by the measures 

(Mnhc) "~A( t ,  z ) - '  I-I e~ cos ,(x) dl~t~cA(O) 
x~A 

(Mhc) ~ c ( f l ' Z )  -1 r I  [1 + zcosep(x)]dttBcA(e~) (4.1) 
xEA 
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with dl~acA the Gaussian measure with mean 0 and covariance flCA, where 
CA(x, y) is the Coulomb potential with either free boundary conditions 
(b.c.) at ~A, i.e., CA(x, y) = XA(x)C(x -Y)XA(Y), C(x) the lattice Coulomb 
potential, or 0-Dirichlet b.c. at ~A. 

In the first case we say ( �9 )(Ahc)( r ,  z) has free, in the second case that it 
has 0 b.c. Physically, free b.c. correspond to confining the gas in the 
interior of perfectly insulating walls, whereas 0 b.c. correspond to perfectly 
conducting walls. (Clearly there are intermediate b.c.) 

We now show that in two dimensions the difference between free and 
0 b.c. is reflected in very different screening properties of the Coulomb gas, 
even in the thermodynamic limit. To see this we consider fractional charge 
one- and two-point correlations (see Sections 3.2, 3.3). 

Theorem 4.1. Let z > 0, and in the case of the (Mhc) ensemble 
z < 1 [so that 1 + z cos q~(x) > 0]. 

(1) In arbitrary dimension p/> 2 and for 0 b.c., there is exponential 
Debye screening if fl is small enough. (For e ) 3, this is true for arbitrary fi 
and small z.) The fractional charge one-point correlation is nonzero, the 
connected (truncated) fractional charge two-point correlation decays expo- 
nentially. 

(2) In two dimensions and for free b.c. and all q E (0, 1), all z/> 0, 

( eiq~'(~ r ,  z) = 0 (4.2) 

( eiq[~'(~ ~O( fl, z) >>- O(Ixl ) (4.3) 

as [x[ ~ oo, for arbitrary A c_ •2 and all B. 

Remarks.  There are heuristic reasons to expect that for ~, ) 3 Theo- 
rem 4.1(1) is true for all B and that in the thermodynamic limit 0 and free 
b.c. coincide. As remarked in Section 3.3, the proof of (1) for the (Mnhc) 
ensemble is due to Brydges. (4) His proof extends to the (Mhc) ensemble, for 
fl << 1, 0 < z < 1. [We thank D. Brydges for checking some details in his 
proof for the (Mhc) ensemble.] 

Theorem 4.1(2) shows that in the two-dimensional, free b.c. equilibrium 
states fractional charges are not screened, even in the thermodynamic limit 
and for arbitrary ft. The classical Goldstone picture based on the behavior 
of the functions zcosq~(x) or ln[1 + zcosq~(x)] (z < 1) and the Peierls 
argument suggest that for B << 1 

( e iq[q,(0) -q,(x)l)0ac)( ~, Z) >1 Mq(/~, z) > 0 (4.4) 

for all x (i.e., there is "long-range order") even for free b.c. Thus, for fl << 1, 
the free b.c. expectation in the thermodynamic limit is presumably not 
clustering. A proof of this is expected to follow from the methods of Refs. 
39 and 4, but we have not checked the details. 
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Goldstone and Peierls suggest that the free b.c. state in the thermody- 
namic limit is of the form 

N 

( .)(he)(  ,8, z) = lim ~ c(N)( �9 )(mhC)( fl, Z) (4.5) 
N - - ~  m = - - N  

with (q,(0))~r fl, z) = 2~rm, and 

( F ( ~  - rn))~)(/8,  z) = (F(#,))(oh~)(/8, z) 
(4.6) 

(")(0h~)( B, Z) identical to the 0 b . c .  state 

From (4.6) it follows that 

e iqep(O) \ (hc) [ [4 Z )  = const e i2~rqm (4.7) 
I m I. I J ,  

Moreover, (e iq*(~ )(h~) (/3, Z) = 0. Hence 

C(m N) = 1/2N + 1 in (4.5) (4.8) 

Since the right-hand side of ('4.7) is not real, for m =~ 0 and because of (4.8), 
the decomposition (4.5) does not represent a decomposition of the equilib- 
rium state of the Coulomb gas with free b.c. into physical, extremal 
equilibrium states. The states (.)(,,,hc)(,8,z) are unphysical states of the 
Coulomb gas (in the q representation) characterized by complex boundary 
conditions. Thus the free b.c. state is physically different from the 0 b.c. 
state! 

Proof of Theorem 4.1. We have already commented on the proof of 
(1). Moreover, inequality (4.3) is (3.46) of Section 3.3. We are left with 
proving (4.2). This is based on the following lemma. 

Lemma 4.2. Let ~(O) = ~ep(x)p(x), O E 11(Z2). Then 

[exp[ ( -B /2 )~O(x )C(x -y )o (y ) ]L  x,y if ~ O ( x )  = 0  

(eiq'(~ [o if ~O(x)  ~ O 

[Here C ( x - y ) ~ ( 1 / 2 w ) l n l x - Y l ,  as I x -  Yl ~ ~ ,  is the two-dimensional 
lattice Coulomb potential.] 

Proof. The proof of Lemma 4.2 follows by noting that C(x) 
=lim,+o[C,(x)-(l/2w)lne ], where C , ( x - y )  is the integral kernel of 

2 1 ( - A  + e ) -  , via Fourier transformation. See Ref. 10 for an exact state- 
ment and proof. 

We now consider the fractional charge one-point correlation. Clearly 

( e iqq'(~162 ,8, z) = ~hr ,8, z)- l  ~ cozs (e i[q*(O) +~(O)]),SC (4.9) 
P 
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where p(x) E Z, for all x E A, and cp are combinatorial coefficients with the 
property that 

cozZxlP(x)l < oo for all z > 0 
P 

Since q~(0 ,1 ) ,  q + ~ x ~ A p ( x ) = q + n v  aO, for some n = n ( p ) ~ g .  By 
Lemma 4.2, 

( ei[qq'(O)+eP(~ flC= ( eiC'(q'8~ f lc= 0 

for all Z-valued p on A. This completes the proof of (4.2); hence Theorem 
4.1 is proven. �9 

Next, we derive an upper bound on the inverse correlation length 
(mass), m( r ,  z), of the (u/> 2)-dimensional Coulomb gas in any translation- 
invariant infinite volume state, ( . ) ( f l ,  z), which has screening [and with 
z < 1 in the case of the (Mhc) ensemble]. 

In Section 2.3, (2.29), (2.32) we have shown that under the above 
hypotheses 

0 ~< (l~,(k)12)(B,z) = / 3 ~ ( k ) - ' -  B2~X(k)-2(14(k)12)(B,z ) (4.10) 

where 
- 1  2 , lCOS /) 

is the Fourier transform of the u-dimensional Coulomb potential. If there is 
screening then (I,r is analytic in k, in particular uniformly 
bounded. Since A(k)-1 = O(k-2) near k = 0, 

(lO(k)12)( fl, z) = k2G(k) (4.11) 

where G(k) is analytic in k and G(0)= f l - l .  This is a sum rule which 
implies the well-known fact that (q2)(fl, z) is O(aA) ("abnormal fluctua- 
tions"). By Fourier transformation, 

[xle(qoqx)( t ,  z) = 2pfi - '  
X E T/*' 

so that 

Ixl21<qoqx>(B,z)l ~> 2p/~ --1 (4.12) 
x E Z  ~ 

Let m ~ m( t ,  z) denote the inverse correlation length. By reflection positiv- 
ity (more precisely, the existence of a self-adjoint transfer matrix, see 
Appendix A, and the spectral theorem), 

I(qoqx)( B, z)l < - (qoqe)( t ,  z)e --(m/~f~)lxl 

-<< [(q02)( fi, z)le-(m/C;)lxl (4.13) 

(where e is some lattice unit vector). 
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The proof of (4.13), given a self-adjoint transfer matrix, is standard. 
The chessboard estimate O4) then yields 

(qE)(fl, z) < lira ["  
2 x 7 I/[AI 

I I-I q;~) (fl, z) I (4.14) 
A1"7/~[ x E A  A 3 

The right-hand side of (4.14) is a thermodynamic quantity which is easy to 
estimate: 

( t-[ q25 (fl, z)<(c ~.~ q2e-(B/4~)q2)'AI (4.15) 
x E A  A \ q ~ Z  

where c is some constant bounded uniformly in z. Inequality (4.15) follows 
by writing (Hxeaq~)a(fl, z) as the product of EA(fl, z) -1 and an un- 
normalized expectation. Clearly, ZA(fl, z) > 1. The unnormalized expecta- 
tion is bounded above by one where all couplings between different sites 
have been eliminated by means of replacing the Coulomb potential, C, by 
(l/2p)Sxy. Here we use the inequality (q, Cq) >1 (1/21,)(q,q) so that 

exp[- -~(q, Cq)] < exp[- 4-~(q,q) ] 

= x HAexp[ - f l  q~ 1 (4.16) 

Thus 

IX q2x) (fl, z) '~far< ae-~14~ (4.17) 
x E A  A 

for some finite constant, a, bounded uniformly in z, and all A. Combining 
(4.12)-(4.17) w e  find 

2~,fl-I < a e - f l / 4 v  ~,, IxlZe-~'/r 
x E Z  ~ 

whence 

or 

f l - I  <~ C~,e-fl/4~,m-(v+2) 

m < (C~,fl)l/"+2e -'~/4~+2) (4.18) 

for some computable constant C, independent of z. Thus we have proven 
the following theorem. 

T h e o r e m  4.3. In the v-dimensional Coulomb gas, the inverse corre- 
lation length m (fi, z) is bounded by 

m(fl, z)< O(e-8"#), 6~ >~[4v(v + 2)] -I  

uniformly in z. 
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Remarks. Since the dual of the two-dimensional Villain model is the 
z = oo limit of the two-dimensional Coulomb gas in the (Mnhc) ensemble, 
and (4.18) is uniform in z, we obtain that the mass of the dual Villain 
model is bounded by m e ( B ) <  O(e-B/32). This inequality is comparable 
with the one for the two-dimensional X Y  model; see Section 3.1, (3.19). 

[For the two-dimensional Coulomb gas we expect that 

I(qoq,)( B, z)l < min(e-C/~e-("/42)r~l e-Calxl - ' )  

This would imply that m(fl ,  z) <. O(e--aeb~), but we have no proof of this.] 
The final topic of Section 4.1 is to show that the Coulomb gas in the 

(Mnhc) ensemble, for all z > 0, or in the (Mhc) ensemble, for 0 < z < 1, 
has neither short- nor long-range order, in the sense that, for n > 0, 
--(qoq, e)(hr Z) is a positive, convex function which tends to 0, as 
n ~  ~ ,  for arbitrary 18 and p. This is to be compared with the fact that for 

> 2, z = O(eOB),/3 >> 1, (qoqx)h~(18,z) has long-range order, in the (Mhc) 
ensemble.(6) 

We have shown in Section 2.3, (2.32) and (2.33), that for x v a 0, 

(q0qx)(hc)( 18, z) = - (S(O)S(x))(h')( 18, z) (4.19) 

with S(x)  = [d/ d~(x)] In F(~(x)), and 

{exp[zcos~(x ) ]  (Mnhc) 
F(ep(x)) = 1 + zcosq~(x) (Mhc) 

Clearly (S(O)2}(h')(fl, z ) >  0 [provided z < 1, in the (Mhc) case]. It is 
shown in Appendix A, (A.3) that for x = ne, e a lattice unit vector, 
n = 7/\{0}, 0 ~< (S(O)S(x)}(hr is convex in x. 

By (4.19), (qoqx}(hc)(fl, z) is negative and concave in x, for x 5 a O, i.e., 
there is no short-range order. 

We pause for a short digression concerning the transfer matrix, Tq, of 
the Coulomb gas in the q representation (see Appendix A): in Ref. 14 it is 
proven that the quadratic form G with integral kernel 

a ( x  - y)  = ( -  1) x'+ ' +x*-~ . . . . . .  y"<q=qy)(hc)( 18, z) (4.20) 

satisfies reflection positivity (see Appendix A). A general theorem then 
guarantees that, for x = ne, e a lattice unit vector, n ~ Z\{0}, 

G(x) = ( qo, rq- 'qo)  (4.21) 

where Tq is some self-adjoint contraction on a Hilbert space with scalar 
product ( . , - ) .  (Tq is the generalized transfer matrix. (6'14~ See also Appen- 
dix A, Corollary A.3.) Now, since (qoqx)(h~)(fl, Z) is negative and concave 
in x = ne, n E E\(0}, [provided z < 1 in the (Mhc) case], sgnG(x)= 

- I) ~-~, i.e., G(x) is staggered. By (4.21), this impiies that Tq ~ 0 (which is 
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what is claimed in Appendix A; we recall that the transfer matrix, T,, of 
the Coulomb gas in the ~ representation is nonnegative). 

Next, we establish absence of long-range order in (qoq~)(h~ z). 
In Section 2.3, (2.33) we have shown that [provided z < 1, in the (Mhc) 

case] 

< ({S(k){2)(hO(fl, z) ~< const for all fl (4.22) 0 

[the constant is calculated in (2.33)]. Thus (l~(k)21)(ho(/3,z) is bounded 
uniformly in k. By the Riemann-Lebesgue lemma, 

(SoSx)(h~)(/3,z)~O as [ x l ~  ~ (4.23) 

Since ([O(k)[2)(h~)(3,z) is bounded [ for  z < 1, in the (Mhc) case], 
(qoq~)(h~ is in 12(77"), i.e., I(qoqx)[ < 0([x[-"/2) �9 

In view of (4.19) we have now proven the following theorem. 

T h e o r e m  4.4. In arbitrary dimension and for all/3 > 0 and z > O, 
with z < 1 in the (Mhc) ensemble, 

(1) 

I(qoqx)(hO( fl, z)l < O(Ixl-"/2 ) as Ix[-~ oo 

(absence of long-range order); 
(2) for x = ne, e a lattice unit vector, (qoq~)(h~ is negative and 

concave, for all x :~ 0 (absence of short-range order). 

Remark. It is clear from the proof that Theorem 4.4 is true for 
arbitrary reflection positive pair potentials (not only the Coulomb poten- 
tial), e.g., the Yukawa potential. 

We set Theorem 4.4 in contrast to the following theorem. 

Theorem 4.5. In the (v/> 2)-dimensional (Mhc) ensemble with 
z > e a~ (where a is a constant estimated in Ref. 6) and large fi, (qoqx)hC(/3, 
z) has long-range order, and there exist at least two extremal equilibrium 
states ( hc �9 ) +_ (/3, z), with 

(qx)~C(/3,z)= + ( _  1)x~+~+ . . . .  

Thus in the (Mhc) ensemble there exists, for sufficiently large z 
e o(~), a phase transition with order parameter, with at least two extre- 

real equilibrium states which break translation invariance spontaneously 
(crystalline structure), for large /3. [For some z = z ( /3 )>  1 and large /3 
there are in fact three extremal equilibrium states.] The proof of Theorem 
4.5 can be found in Ref. 6. In Section 7 this result is extended to the dipole 
gases in the (Dhc) ensemble. 
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4.2. Characteristics of the Dipolar Phase of the Two-Dimensional 
Coulomb Gas 

From Section 4.1 we conclude that an interesting range of parameters 
in the Coulomb gas about which there are only few rigorous results is v = 2 
and (i) fl large, z > 0 arbitrary, for the (Mnhc) ensemble; (ii) fl large, 
0 < z < const, for the (Mhc) ensemble. 

This range of parameters is expected to correspond to a translation- 
invariant, dipolar phase of the two-dimensional Coulomb gas without 
screening. In this section we propose to characterize its properties and 
comment on possible methods to prove its existence. 

From Section 3.2 (Remark 2) after Conjecture 3.7 ~ and Section 3.3 
(Theorem 3.8) we know that the transition from the high-temperature 
plasma phase with screening to the low-temperature, dipolar phase without 
screening, henceforth called P - D  translation, is a phase transition with order 
parameter. The order parameter is the fractional charge one-point correla- 
tion, (e  iq,(0) )(  /3, z), q ~ (0, 1). [We shall omit a superscript "he" even when 
we think of the (Mhc) ensemble to which the following analysis applies, 
too, provided 0 < z < 1.] We recall that, for arbitrary fl, 

(eiq[~(~ >~ const(l + Ixl)-qw (4.24) 

so that in the screening phase (/3 small and 0 b.c.) 

(e'q~(~ /3,z) > 0 (4.25) 

because truncated correlations cluster exponentially. The dipolar phase (/3 
large) is characterized by 

( eiqtq~(~ /3, z) <~ const(1 + Ixl) -q2~'/2'~ (4.26) 

for some/3 '  = fl'(fl, q,z) expected to be strictly positive on {q: 0 < q < 1} 
if fl is large enough. 

Thus 

(eiq~'(~ = 0 (4.27) 

in the dipolar phase, i.e., (e ~q~'(~ )( fl, z) is an order parameter for the P - D  
transition. Notice that (~(0) - ~(x))( fl, z) = 0, since ( - ) (  fl, z) is even in q,. 
Therefore if fl ' is independent of q, (4.26) implies 

( [~(0)  - ~(x)]2)( /3 ,z)  /> const/3 ' ln(1 + Ixl) (4.28) 

[expand both sides of (4.26) to second order in q]. 
Next, we note that for x = ne, n = 1, 2, 3 , . . . ,  

- = - 

< 2(ff(0)2)( fl, z) (4.29) 
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since (q~(0)~(x))( fl, z) > 0 by reflection positivity. Thus 

(~(0)2)( fl, z) is divergent (4.30) 

in the dipolar phase. 
In conclusion, (4.30) is a somewhat weaker characterization [the infini- 

tesimal version of (4.26)] of the dipolar phase than (4.26). It obviously 
applies to the Villain model (Sections 3.2, 3.3) as well. [Specialists in 
roughening transitions usually prefer (4.30) over (4.26).] 

It is natural to ask whether the order parameter, (e iq~(O) )( fl, Z), can be 
related to the derivative of a thermodynamic quantity. To answer this 
question we consider the following Coulomb gas: let dt~ac A be the Gaussian 
with 0 (i.e., conducting) b.c. at 0A. Consider the following partition 
function of a Coulomb gas with particles of charge _ 1 and activity z and 
particles of charge ___ q and activity ~: 

~A(fl, Z,~) = / x eIeI Aexp( Z COS ~()X + ~cos[qe~(x)]}dltBcA(ep) (4.31) 

The expectation in the corresponding ensemble is denoted ( .  5A(fl, Z,~). 
[We only discuss particles without hard cores. The discussion applies only 
partially to (Mhc) ensembles.] Let 

1 In ZA(fi, z, ~) (4.32) ?A( = 

be the finite volume pressure. The limit 

p(fl, z,~) = lim pA(fl, z,~) 
AI"Z 2 , 

exists; see Ref. 11. Next 

OPA 1 O~ (fl'Z'~)=T" ~ x~A (cOS[qt~(X)]~A(fl'z'~) (4.33) 

The correlation inequalities of Ref. l 1 (Sections 3 and 4) show that 

(cos [ qe~(x) 1 ) A( fl' z, ~ ) is decreasing (4.34) 

when A increases and/or  ~ decreases. Thus 

3 ~ ( fl' z, ~ ) is decreasing in A and increasing in ~ (4.35) 

Using (4.32)-(4.35) and convexity of PA(fl, Z, ~) in ~ one easily shows 
that 

or O---~(fl, z,~'___ ) = lim (fl, z,~" + )  = (cos[q,(O)])(fl, z ,~+),  
A~'Z 2 

where ( .  ~(fl, z,~) is the thermodynamic limit of ( .  ~A(fl, z,~) and F(~ _ ) 
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= lim,+0F(~ _+ c). By (4.34), 

(cos[qep(O)])(fl, z,~ + ) = (cos[qq~(0)])(B,z,~), (4.36) 

as the two limits, ~ ' ~  and A ~  2, can be interchanged by monotonicity. 
Thus Op/O~)(fl, z,O + ) = (cos[q~(0)])( /3, z, 0), and since ( . ) ( / 3 , z , 0 )  
= ( - ) ( f l ,  z) is even in ~, 

~ ( f l ,  Z, 0 ) (eiqee(~ z) (4.37) + 

which is the desired relation. 
Therefore the P-D transition can also be characterized by 

OP z - ~  ( fl, , 0 + ) > 0 in the P (screening) phase 
(4.38) 

0p z ~-~ ( 13, , 0 + ) = 0 in the conjectured D phase 

We now sketch an argument suggesting that (4.27) holds for large/3. 
To this purpose, it is useful to compare p with the pressure p F given by 
(4.31) and (4.32) but where dtL~c A = d~B c has free b.c. We then apply 
Lemma 4.2 to the right-hand side of (4.31) to conclude that ~ ( / 3 , z , ~ )  and 
hence pff(/3, z, ~) are functions of z 2 and ~2, because neutrality of a charge 
configuration requires an even number of particles with charge ___ and 
charge _+q, as q E (0, 1). ThuspF(fl,  z ,~)= limA~z~pF(/3, z,~) is even in z 
and in ~'. 

For fi large enough (~> 8~rq-2), low-order terms in an expansion of 
p(r) (/3, Z, ~) in z and ~" about z = ~ = 0 are convergent (i.e., infrared finite in 
the thermodynamic limit) and independent of b.c., i.e., the same for 0 and 
free b.c. Since p r is even in z and ~', the coefficients of z 2"+1, ~-2m+1 in this 
expansion all vanish. Presumably, the expansion in z and ~ about z -- ~ = 0 
is divergent, but it is reasonable to expect it is asymptotic. 

Thus, we conjecture that for fl large enough (1)pV(fl, Z, ~) is continu- 
ously differentiable in ~" at ~" = 0, for 0 < z small enough; by evenness that 
would imply (~pr/O~)(/3, z,O)= 0, for small z; and (2) for sufficiently 
small z and ~,p(fl, z,~) --'~I) F(/3, Z,~). 

By (4.25), (4.37), and (4.38), a proof of (1) and (2) above would also 
imply the existence of a P-D transition. 

Next we give a heuristic argument suggesting that 

m (/3, z) ~, 0 as fl?fl~ with fl~ ~ 8~r (4.39) 

In Ref. 10, the continuum limit of the two-dimensional (Mnhc) Coulomb 
gas has been constructed for all/3 < 4~r. By using the scaling properties of 
the two-dimensional Coulomb potential one can show that the inverse 
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correlation length (mass) has the form 

m( fl, z) 2= I~( fl ) Z2/(2-~/4~r) (4.40) 

for some function/~(fl)/> 0; see Ref. 10. 
Perturbative arguments (4~ suggest that, after a divergent, additive 

renormalization of the pressure, the continuum limit of the Coulomb gas 
exists, and Eq. (4.40) remains true, for all/3 < 8~r. Now suppose that/~(/3) 
has at most a power law divergence at/3 = 8~r. Then 

lim m(/3,z) = 0 forz < 1 (4.41) 
BTS~r 

This suggests that, on the lattice, the critical point, tic, of the P-D 
transition is ~ 8~r. The point/3 = 8~r also seems to be a critical point in a 
recent, exact study of the sine-Gordon theory which is isomorphic to the 
continuum Coulomb gas by Sklyamin, Takhtadzhyan, and Faddeev. (40 

In Section 5 we develop techniques and estimates which we hope are 
suitable to rigorously establish the existence of a P-D transition for the 
two-dimensional lattice Coulomb gas in the (Mhc) ensemble and prove 
inequality (4.26) for large /3 and 0 < z < 1. In Section 5 we study a 
two-dimensional dipole gas in a (Dhc) or (Dnhc) ensemble for which we 
prove (4.26) for arbitrary/3. The techniques of Section 5 suffice to analyze 
gases of general, neutral multipoles, provided the activity of multipoles of 
large size is suitably small. 

We therefore propose to approximate the two-dimensional Coulomb 
gas by gases of neutral multipoles of arbitrary sizes in a convergent fashion 
and such that inequality (4.26) remains true in the limit. (Notice that 
Lemma 4.2 says that in principle such an approximation is possible, at least 
for free b.c.) 

5. THE DECAY OF THE CHARGE-CHARGE CORRELATION IN 
DIPOLE GASES 

In this section we study the charge-charge correlation in a sea of 
dipoles. We shall concentrate on two specific ensembles. Let d/~B(q~ ) denote 
the Gaussian measure of covariance f l ( - A  + r - i, in the limit ~--> 0. Here 
A denotes the finite difference Laplacean. The first ensemble describes 
dipoles with no hard core (Dnhc): 

( . ) ( f l ,  z) = lim~A(fl,  Z) -1" (-eZV(A)d~13(r (5.1) 
A1"2~ ~ - " d 

where 

U(A) = E c o s a [ , ( j )  - 0( j ' ) ] ,  a = 1 or 2r 
tJ-J'l = 1 
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and "~A is the partition function. By scaling the constant a can always be 
chosen to be 1, but for notational convenience we will choose a = 2~r at one 
place. 

The expectation for dipoles with hard core (Dhc) is given by 
"lim A1"77 ~'' of 

( " >A( fl, z) = Z ; ' f  - 1"I { l + z ~ c o s a [ q ~ ( j ) - ~ ( j + e ) ] } d t t l ~ ( q ~  ) (5.2) 
jet. e 

where e ranges over unit lattice vectors and g e'g 4Z~ f3 A. 
The above ensembles are very special cases of those discussed in 

Section 2. Although we shall prove our results in detail only for the above 
expectations, nearly all our results extend to the more general class of 
dipole gases discussed in Section 2. In fact, at the end of this section we 
shall analyze dipoles of arbitrary length L and prove the analog of the 
following result. 

T h e o r e m  5.1. Let a = 1. For all fl, z, in the (Dnhc) ensemble, we 
have 

(ei[ep(y) -r fl, z) <~ C~,Be-g'l~ 

where 

g ,=  2-~[l + fl(z + 2c)]- '  

and c can be chosen arbitrarily small. Also, for the (Dhc) ensemble, if 
[zl < ~6 e/VS, we have 

( ei[q,(y)-,~(x)])( fl, z) <<. Cfle -gzl~ 

with 

g2 = ~-~fl(1 + 4flze-B/8) -1 

As explained in Section 3, the two-point correlation of the Villain 
model is, by duality, equal to 

(ei(~ fl ) = <Ax>V( fl ) 

where 

and 

1 

f f ' ( J )= {0'  otherwiseO<jl<x and j 2 = O  (5.4) 
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As a first step toward understanding the decay properties of (5.3) we shall 
bound (Ax)(/3,z)  from below in the dipole ensembles (5.1) and (5.2), with 
Ot = 2q7". 

Theorem 5,2. 
we have 

Let a = 2~r. For all fl, z in the (Dnhc) ensemble (5.1) 

(Ax) (  fl, z ) > e -gl~ (5.5) 

g =/3  -1/2~r + z- eonst 

For the (Dhc) ensemble (5.2), if [z[ < �88 +/VS, then (5.5) holds with 

g = fl-~/2~r + constze -p/8 

Remark.  To prove Theorem 5.1 we shall use the method of complex 
translations, (29) q~(j)oq~(j)+ ia(j), for suitable a, whereas in the proof of 
Theorem 5.2, we shall apply a real translation, e~(j)o e~(j)+ a(j). 

Proof  of  Theorem 5.1. For notational simplicity we first set y = 0. 
We apply a complex translation of the field d~ (29) : 

@( j)  -+ ep(j) + iTa(j) (5.6) 

where 7 depends on the ensemble and is chosen later, and 

a(j )  = C ( j , O ) -  C ( j , x )  (5.7) 

with C the kernel of - A  -1. The function a(j)  satisfies the following 
relations: 

~,, [ a ( j ) - a ( j ' ) 1 2 = ( a , - A a )  
I j - J ' [  = 1 

= a(O) - a(x)  ~(log[xl ) / r r  (5.8) 

for large Ix], and for IJ - J ' [  = 1 

]a(j) - a(j ')[ < const + IJ - x + 1[ (5.9) 

]a(j) - a(j')t  <. const[xl/lj[ 2 

Let us first consider the dipole gas in the (Dnhc) ensemble. In this case we 
choose 

7 = ( f l - * +  z) - I= /9 (1  + f l z ) - '  

Under the change of variables (5.6) the exponent of the functional 
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measure becomes 

- ( 1 / 2 f l ) ~  [V(~ + i2/a)(j)]2+ z ~,  cos{~(j) - ff(j ') + i2/ 
J IJ-J'[ = 1 
X [a(j)- a(j')] ) 

- 2 / [ a ( 0 ) -  a (x ) ]  + i[0(0) - +(x)]  

We estimate the integrand in the functional integral by taking absolute 
values, i.e., the real part of the exponent, and using (5.8) and (5.9). The real 
part of the exponent is 

- ( 1 / 2 f l  ) ~_~(Vq))2(j) + z ~] cos[q)(j) - 4,(j') Jcosh 2/[ a( j )  - a ( j ' ) ]  
j [j--j'[ = 1 

2/2 
+ ~-~ [a(0) - a (x ) ]  - 2/[a(0) - a ( x ) j  

For Ijl >> Y, Ij - xl >> Y, we have by (5.9) 

cosh{ 2/[ a( j )  - a( j ' )  ])  - 1 < (1 + ,)2/2[ a( j )  - a( j ' )  ]2/�89 

[For IJl, IJ - xl < O(2/), we simply estimate cosh(.) - 1 by a constant.] 
Thus by (5.8) the exponent is bounded by 

- ( 1 / 2 f l ) ~ , ( V q O 2 ( j )  + z ~ cos[(/)(j) - (p(j')] 
J I J - - j ' l  = 1 

- 2 / / 2 ( I  - c2/)[a(0) - a(x) ]  + Const 

with 2/= fl(1 + flz) -1, 

2//2(1 - > / V 2 ( 1  + 

for some small c. Integration over q, now cancels the partition function, and 
we have 

< ei[r176 <~ e- f l /27r( l  + Bz + 2~fl)-'loglxl 

This completes the proof of Theorem 5.1 for the (Dnhc) ensemble. 
Next we turn to the case of dipoles with a hard core, i.e., (Dhc). In this 

case, we first prove a lemma which enables us to take advantage of the 
small effective fucacity of dipoles. 

Lemma 5.3. Let F{(~) be a function of {(~(j)} wi th j  ~ j 0 ,  and set 

= ze -e/8, d~(jo ) = �88 ~ q~(j) (5.10) 
IJ-jd = 1 

Then 

f [ I + z cos(+(jo) - (~(j~)) ] Fdl~# (+) 

=f[ ,  + ,  cos( (jo)- 
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Remarks. Lemma 5.3 is simply an explicit computation of the condi- 
tional expectation of cos[q~(j0) - ~(J0], given {~(j)} j :/:jo. The simplicity 
of the result is due to the Markov and Gaussian property of d/~/~(~). 

Because of the nonoverlapping condition on the dipoles we have the 
identity 

whenever x and y do not belong to L. 

Proof. The lemma follows by an explicit integration of the @(J0) 
variable. This is easy, because the integral is Gaussian: 

fe'*(Jo  II e-t~'(J~ 
l j-j0[ = 1 

= f I I  e-[*(J~176 
Ij-Jd = 1 

where we have used 

fexp{-2q,( jo)Z/ f l  + *(jo)[ i  + 8* ( jo ) / f l ] }d*( jo )  

= f e x p [  - 2,(j0)2/fl]dep(j0)e-P/SeiZ'(J~ s~'~j~ �9 

Proof of Theorem 5. 1. The proof for hard core dipoles also follows 
by complex translations and taking absolute values. We first apply Lemma 
5.3 to reexpress the numerator and partition function as in (5.11). (We 
assume that y is near 0 but x and y do not belong to 1_. The general case 
will be discussed at the end of this section.) Let a(j) be as in (5.7). The 
inequality 

]r + ib[ <<, r + b2/2r < re b2/2r, r > 0 
can be applied to show that for -< 1/16 we have 

1 + ~'~: cos[ ~eq~(j) + iy~ia(j)] 
e 

< {1 + ' ~ e  cos[ 6-~( j ) ]cosh  ['/Sea ( j ) ] ) .  e "~'6~a(j)z 

< {1-b ' ~e COS[ ~e~ (j) ] )e2[~'aea(j']2 

provided IJ - xl >> 1 and IJ - yl >> 1. Here we have used the notation 

Be+ (j)  = ~(j)  - q~(j + e) 



On the Statistical Mechanics of Classical Coulomb and Dipole Gases 657 

and 

8e+(j) = +( j )  - O(j + e) 

Note that since 

a( j )  - - a ( j ) = l ( A a )  ( j )  = 0, j # x , y  

we have 

w h e n j  r x, y. 

8ea(j) = a ( j )  - a ( j  + e) = a ( j )  - a ( j  + e) 

The Gaussian contribution, after taking absolute values, equals 
C e x p ( 7 2 / 2 f l ) [ a ( x ) -  a(y)], as in the proof for the (Dnhc) ensemble. The 
sum 2(7~)2~j,e[Sea(j)] 2 is clearly bounded by 

2(y~)2[ a(x)  - a(f l ) ]  

The ~, integration of the numerator exactly cancels the denominator. 
Collecting all coefficients of a(x) - a(y)  we see that 7 = fl(1 + 2fl~)-l 

is the optimal choice. As in the proof for the (Dnhc) ensemble we finally 
obtain 

(e  i[~(x) -r < Cr e - ( #/2=)O + 4fl~,) - I  loglx._y I 

which completes the proof of Theorem 5.1. �9 

Remarks .  We have seen that the decay of the charge-charge correla- 
tion in the dipole gas has a fairly elementary proof using the q~ representa- 
tion. If one attempts to obtain such results directly in the q (or gas) 
representation the required estimates appear to be far more complicated. 
The q representation does have the advantage of making the small activity 
of the dipoles manifest. What Lemma 3 does is to give us a kind of mixed 
q-c) representation; for had we integrated all the q~ variables we would have 
precisely obtained the q (or gas) representation. Thus our approach 
amounts to a phase space analysis in function space. 

Next we prove Theorem 5.2. We shall consider only the (Dhc) case, 
since the other case is easier. We make the real change of variables, 

+( j )  + +(j)  + a ( j )  

with a(j)  given by 

a(j )  = ~ C(j ,  k)~2fX(k) (5.12) 

Under this transformation, the linear terms cancel, and by Lemma 5.3 the 
exponent of the interaction becomes 

~,, log(1 + , ~ ,  cos2~r[ tSe~a(j ) + Sea(j)] I -- F(x)  
j ~ L  " e ~ J 
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where 

F(x)  = - ~  ~,, (Va)2(j) + Ixl- 2 ~ a ( j ) ( o z f  x )(j) 
J J 

- 2ill [Ix[ + ~(~2a)( j ) f f ( j ) ] j  

Note that 01ff ' )( j )  = 6(j,O) - ~(j ,x),  and 

(02a)(j) = ~ ~2C(j - k)(O2f x )(k) 
k 

= E (a2C)(J - k ) f f ( k )  
k 

= ~., ( A C ) ( j  - k)fX(k) 
k 

- ~ ( O ~ C ) ( j -  k ) f f (k)  
k 

= - i f ( j )  - ~ ( ~ 1 C ) ( j  - k)(Ojf  x )(k) 
k 

= - i f ( j )  - O1C(j ) + O,C(j - x) 

Summing ~2a(j) over j  we see that ]xJ is canceled and thus 

F(x)  ~ loglx[ 
2~rfl 

Also we have 

(5.13) 

(O,a)(j) = ~ a] C( j  - k)a2fX(k) 

= ~ 32C(j - k)(b,ff '  )(k) 

= O2C(j ) -  O2C( j -  x) 

Since a is harmonic (rood 1), 6a(j)-- 8a(j), (mod 1). From (5.13) and the 
above equation we see that ~a(j) satisfies (rood 1) the estimates (5.8) and 
(5.9). We now introduce the functions Dj(ep) 

+   cosi2  (j l } 
= ~ ,  {cos[2~rS-~(j)](cos[2~rSea(j)] - 1) 

e 

+ sin[ 2~e*(j  ) ](sift[ 2"17~ea(j ) ]) } 4- Z,20[ ~a(j) 2] 

In the last equality we have used the double-angle formula and the Taylo r 
series for logo + x). Now set D = ~Dj ,  and then we have using Jensen's 
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inequality and the fact that sin[2~rSe~(j)] is odd 

( Ax ) (  fl, z ) = ( e - D ) (  fl, z)e-F(x) 

> e x p { - - , c o n s t ~ ,  [Sea(j)]~ - (1/2~re)log[x[} 
j,e 

with {6ea(j)}l  = ~ea(j), mod 1. �9 
Next we turn to the more general case of dipoles of different lengths. 

Suppose we consider the fractional charge correlation in a two-dimensional 
Coulomb gas. Oppositely charged particles will tend to form dipoles of 
various lengths with dipoles of length L having a small effective fugacity 
~ exp[-(B/27r)logL],  but with an entropy proportional to L 4. To mimic 
this situation we consider two lattices 

/-I = dZ2 A A and /-2 = [ dL7/2 + ( d , o) ] O A 

Let 

8LO(/) = +(j)  -- +( j  + Le) 

with e = ej a unit lattice vector, and define 

<e't*(x)-*(Y)l/E>A= ~'7,1f II [1 + z, cos6,ep(j)] I [  [1 + ZLCOS6Lg,(j)] 
j~L] jEt2 

X e il ~,(x) - ~,(y)l/2dlzl ~ (~) (5.14) 

It is convenient to let [-1 and f-2 denote the collection of squares BI(j), 
B2(j) centered at the sites of/-1 and I. 2 having sides of length d and dL, 
respectively. Note that/-x A/-2 = 0 so that the positions of the dipoles do 
not overlap. 

The choice z x ~ d 2 and z L ~ Lad 2 mimics the entropy since there are 
approximately d 2, Lnd 2 dipoles associated to each site of /-l, /-2, respec- 
tively. Now we want to replace (5.14) by a similar expression but with z 1, z z 
replaced by effective (renormalized) activities, 

f ( c ~ 1 7 6  1 O <~ Y,l < zl e-tVS, 0<< zz. < ZL Const exp -- fl d2 

(5.15) 
This result will be obtained by integrating large blocks of ~'s using complex 
translations. Consider the dipole corresponding to 6L~(j ). For each j ~/-E, 
let ~j(k) be a function on 7 2 satisfying 

~(k) = 1, [j - k[ < 3 L / 2 ,  ~.(k) = O, [j - k] > 2 L  (5.16) 
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IV~j(k)l < const/L, 

Fr6hllch and Spencer 

o < ~(k) < 1 (5.17) 

k ~ L 1 (5.18) 

bj(k) = ~j(k)c(k), k ~ ~., 

by(k) = ~(i)c(i),  I k -  i I < 2, 

c(k) = C( j , k )  - C( j  + Le, k) 

Finally we introduce 

3Lep(j) = ~ Vbj(k) " V~(k) - O(j) + ~( j  + Le) 

a,~ (i) = ~(i) - O(i + e) (5.19) 

Lemma 5.4. Suppose the observables do not overlap with the dipoles 
of the ensemble. The expectation (5.14) remains unchanged if we replace 
each z and ~ ( j ) ,  by ~, 8q~(j) which satisfy (5.15) and (5.19). 

Proof. We first apply Lemma 5.3 to obtain 81q~ and ~r To rewrite 
COS[6L0(0)] we make the change of variables 

~,( k ) -~ e~( k ) + ifibo( k ) (5.20) 

which leaves 6lff unaffected, because by (5.18) 81b(j ) = 0. The function 
ensures that functions localized outside { [k I < 2L) are unchanged. Thus we 
need to see how (5.20) affects exp[i6c~(0)] and d/~/~(0): 

exp{ - E [ V(~ + i f lbo( j )  ) ] 2 ( j ) / 2 f l  + i6Le~(O ) -- fl(SLbo(O)) } 

= e x p [ -  ~] (Ve~)(j)2/2fl + iaLeP(O) -- fl(~Lbo(O)) + E fl(Vbo)2(J)/2] 

It is easy to see using (5.16), (5.17), and (5.9) that with ~ = ~0 

y~ [V(;c)]2(k) = ~- y~ [(Vc)r + (Vr 
2 k k 

< f l  ~ (Vc)2(k)~(k) + const 

< ~ log L + const 
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Again by (5.9) we have 

E((Vbo)2 (k ) - [V( t c ) ]2 (k ) }  = ~_~ [V(bo-tC)]2(k)  
k kEL I 

< log L const 
d 2 

The same argument applies to renormalize cos[SLO(j)], j ~ L 2, j v a 0. �9 

Remark. If d/> 4 is not large it is advantageous to replace (5.13) by 
O(k) o ~ ( k )  + iTb(k) with y smaU. One can then obtain 

[z]l < ZLexp -- (TfllogL) 

without having to choose d very large. For an alternate method see 
Appendix B. 

Theorem 5.5. 
so large that ]Z'I] ~ 1/4, t~2[ < 1/4 then 

( e i[q'(x)-q~(y)]/2) ~ CBe-gl~ 

where 

If x, y do not overlap with dipole positions, and/3 is 

- + -  ) ,  
g =  1+13 z] z 2 d2 const 

(5.21) 

with const independent of fl, L,d and ( . )  is given by (5.14) in the limit 
A = Z 2. 

Proof. By Lemma 5.4 the substitution z ~ ,  8@~80 applied to the 
numerator and partition function does not change the expectation. Let 
a(j) = c(j, x) - c(j, y) and translate 

--+ +(j) + i ~ a O(j) (J) 

From (5.19) we have 

~L[O + i(7/2)a] (0) = ~L0 (0) + iy[a(0) -- a(L)] /2  

because Aa(j)= 8 ( x - j ) -  8 ( y - j ) .  By (5.9), for j restricted to IJ- x] 
< 2Ix - y[, 

j~L2 j~L2 [ j -  x[ + 1 ] j - y [  + 1 

< y 2 c~176 - y [  
~ d  2 
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For IJ - x[ > 2Ix - Y l  the sum is bounded by a constant, see (5.9). Thus 
the total factor arising from the translation is bounded by 

_ + 3'2( ~1 + ~2 
d2 )const 

The optimal choice of 3' yields (5.21). �9 

R e m a r k s .  In the proof of Theorems 5.1 and 5.4 we have used the 
fact that x, y do not overlap with the dipoles of the interaction. This 
requirement is unnecessary, as we now show. For Theorem 5.1 suppose 
y = 0 and x ~ 4Z. Consider the factor 

ei[~'(~ + Z~e cosE@(o) -- ~b(e)] } 

Z ~aeei[2~,(O)-~,(e)-q,(x)l + Z, Zei[ep(e)-4~(x)] = eit~'(~ + 2 2 e 

If we estimate each term as before, treating it as nonoverlapping observ- 
able, we get the bound 

,~-1/Z'(1 + 2z)e-g21~ 

The partition function E' has the factor 

1 + z e~ cos[ ~(0) - q,(e) ] 

deleted hence, by a simple argument, ,~ ' /E < 1. A similar argument applies 
to Theorem 5.4 but here we may need to use the fractional charge of the 
observable so that the observable and interaction dipoles do not cancel. 

It is easy to extend the above results to systems of the form 

j El. 1 k,k' E Bl(j) 

L/2 < Ik - k'l < L 

We can apply the renormalization of fugacity principle as before. Note that 
there are ~ L 4 terms in the sum over k , k '  in B2; thus, since n!e obtain 
from the renormalization of the activity a factor of e l~ we need to 
require fl > 8~r, so that 

4 fl logL 
z2L eT~ l for largeL 

and our measure is positive, whence our techniques apply. 
We hope that the techniques developed in this section combined with 

an expansion of the two-dimensional Coulomb gas in terms of neutral 
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multipole configurations of arbitrary size and (unfortunately very tedious) 
combinatorial estimates will permit one to prove the existence of a P - D  
transition in the (Mhc) ensemble, before long. For an alternate treatment of 
the renormalization of dipole activities, using purely electrostatic tech- 
niques, see Appendix B. 

6. THE M E R M I N  A R G U M E N T  

By establishing a generalized Mermin theorem we shall prove a lower 
bound in momentum space on the q, two-point function, where the expecta- 
tion is given by (5.1) or (5.2). It is convenient to replace fl(--A) -1 by 
f l ( _  AA + e)- 1. The subscript A indicates periodic boundary conditions at 
0A, and e is an infrared regulator to be removed after the thermodynamic 
limit has been taken. Let 

~,(p) _--iAl-1/2 ~ ep(j)e ije 
jEA 

and let A(p) be the Fourier transform of -A .  

Theorem 6.1. Let z, fl be as in Theorem 5.1. Then for the (Dnhc) 
ensemble we have 

(](~(p)]2 5 > (f1-1 ..1_ z ) - l A ( p ) - i  (6.1) 

For the (Dhc) ensemble 

([~(p)125 > (fl --1 ..~ e ) - lm(p)- I  (6.1') 

where F < constze-t3/8/(1 - ze-•/s) 2. 
As a corollary to these inequalities we shall show that the correlation 

of two infinitesimal test dipoles immersed in a (Dnhc) or (Dhc) dipole gas 
does not decay integrably fast. 

Before formulating our generalized Merrnin-Wagner theorem we illus- 
trate how the methods of the previous section enable us to establish (6.1). 
In fact the standard Mermin theorem is an infinitesimal form of the results 
in Section 5. (Similarly, the infrared bounds are an infinitesimal form of 
Gaussian domination; see Refs. 20 and 14.) Let f be a function on the 
lattice and set ep(f) = ~ j  ~(j)f(j). By subtracting 1 from both sides of the 
inequality 

(e i'~'(f)) < e -'2B'<f'cf5 (6.2) 

and keeping the second-order terms in e we obtain 

f l ' ( f ,  Cf) < (q,(f)2) (6.1") 
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hence (6.1) follows by letting f(j) = I Al-~/2e ip.y. Inequality (6.2) follows for 
dipole systems as in Section 5, using the translation r icB'aj, 
where 

aj = ~ C(j, j ' ) f ( f )  (6.3) j, 
The estimates are nearly identical to the ones in Section 5 if we use the 

relation 

E (aj -- aj,) 2= -- <a, A a )  = <f,  C f )  
[j-j '[ = 1 

Note that this technique (as well as the one that follows) works in arbitrary 
dimension. 

To set up the Mermin argument (infinitesimal form), let H(@) be a real 
function of ~(j), j belonging to a box A, and define Z a so that 

( . )  = Z~ I f .  e- I-i(,) II de~(j) 
j ~ A  

is a probability measure. Let D be a first-order differential operator on 
L2(~bAI). 

I .omma 6.2. For regular functions F, H we have 

[<[D,F])]  < ( [  D, [ o , n  ]])'/2(1F12)'/2 

Note, all commutators are functions, because D is first order. 

Proof. By integration by parts 

<[D,F]> = <F[ D,H]> (6.4) 

The Schwarz inequality applied to the right side of (6.4) yields 

< [ D , F ] )  < <1F12>1/2< [ o,n] [ o,n]> 1/~ 

To complete the proof, note that when F = [ D, HI ,  (6.4) becomes 

<[D, [ D , H ]  ]) = < [ D,H] [ D,H]) [] 

We now specialize to the case where H is translation invariant, defined 
in a periodic box A. Let A be a function of one variable and Dj a first-order 
differential operator in @(j). We set 

A ( p )  = IAI - ' /2  ~ e'PJA(q~(j)) (6.5) 
jGA  

and 

h ( p ) - -  E e-ipY<[Dj,[Do, H]]) (6.6) 
jEA 
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Theorem 6.3. In the above situation 

(I,~(p)l ~) /> ([  Do,A(4p(O))])h(P) -1 
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Proof. 

because 

The proof follows directly from Lemma 6.2 by setting 

O = [AI-t/2~e-~P'JDi, F= A(p)  
J 

[ D,F]) = IAI-I ~] ( [  Dj,A(ep(j))]) 
J 

= (E D0,A 

by translation invanance. �9 
Note that in subsequent applications we usually pass to the thermody- 

namic limit, A1"Z ". 

Then 

Application 1. In the study of the (Dnhc) ensemble we set 

(6.7) 

h(p) = A(/9)[ ~ -i + z<cos~(O))] 

For A (q~(j)) = r or sine(j), Theorem 6.3 gives the bounds 
A 2 - 1/h(p) 

(Isin q,(p)12) > (cos q,(0))/h (p) 

respectively, which prove (6.1). 

Application 2. The (Dhc) system considered at the beginning of 
Section 5 is only translation invariant with respect to a sublattice, 47ZL 

For z < 1 the Hamilton function, H, is 

(1/2/3) Z (Vq~)(j):- ~,, log[1 + zcos610(j)] 
j@A j~4;Efq A 

Let Dj be as in (6.7), D = IAI-1/2y~je-PJDj, and 

F = [A[-1/2~-] e~p.jd?(j) = ~(p) 
J 

Then, by Lemma 6.2, 

(Iq,(p)12> > 1/h(p) 
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where 

h(p) = <[D, [ ] ]> 

=Eeip(k-j)( 02H > 
y,k \ 8@(k)O@(j) 

= ~-'a(?) + g(p) 

Frohlich and Spencer 

whence h(p) < ( f i - I  + 3,)A(p), with y < 2z/4~(1 - z) 2. Thus 

<l~,(p)12> > ( f l - '+  v)- 'a(?)-,  
If we replace the dipoles by renormalized ones, trading z for 

= z e - B / 8 ,  the same arguments can still be applied. The resulting estimate is 

(l~(p)12> > ( f 1 - 1 +  ~) -1A(p) - i  with y < const~/(1 - ~)2 

which is (6.1'). 

Remark. We recall the upper bound (see Theorem 2.4) 

<lq,(p)12> < f l - lA(p)  -1 

[provided ~ < 1 in the (Dhc) ensemble]. This estimate and (6.1) or (6.1') 
imply that in two or more dimensions 

<l(0,,/,)(p)l 2> = leiP,_ ll=<l~;(p)12> 
is discontinuous (though bounded) at p = 0. This discontinuity clearly 
implies that the (81~) two-point correlation function cannot cluster in- 
tegrably fast. From Section 2, Part 1 we thus conclude that the correlation 
of two infinitesimal test dipoles immersed in a background dipole gas cannot 
decay integrably fast, i.e., there is no screening. (The same is true for the 
truncated correlation of two test charges, as is easy to verify. The result 
presumably also holds for the standard, truncated dipole-dipole correla- 
tion, but our arguments do not prove this.) 

Related, but weaker results have recently been found independently by 
Park. 

Application 3. To recover the classical Mermin theorem, consider a 
vector-valued field, ~b(j), and a Hamiltonian function 

H = ~ J ( i  -j)q~(i)ep(j) + v(l,/,(j)l) + e,/,l(J) (6.8) i,j 

where 

< zC~ z2 sin[ 61d?(0) ] 2 > 
g(P) <(1/4")A(P)  1 + zcos[61q~(0)] + {1 + zcos[61@(0)]} 2 
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We set 

Dj = O,(j) O / 002(j) - 02(j) ~ / 00~(j), 

A = 02(0)  

Then, 
h(p) < ~ l 1 -  cos p "Jl IJ(j)l 1(4,(0)- ,/,(j))[ + e 

J 

< const p2 + e 
provided 

[j(j)lj2 < ~ ,  (Iq,(0)12) < 
J 

Theorem 6.3 now implies (taking e$0) 

<l~(p)12>/> const(01(0))/p 2 

which is the assertion of Mermin's theorem. Note that for J ' s  with the 
property that at(p) is convex, h(p) is bounded below by ap 2, a > 0, for 
small p. For this reason, Mermin's theorem can in general not be used to 
prove absence of spontaneous magnetization in v > 3 dimensions, as was 
pointed out by J. Bricmont. 

Application 4. Consider the Hamilton function H defined in (6.8) 
with couplings J(j)  = - ilK(j), 13 > 0, such that K(j) is reflection positive, 
i .e . ,  

E zi~K(il +jl,i2 - J 2 , ' ' ' ,  i~ - j~)  >1 0 
i,j E 7/" + (1/2  . . . . .  1/2) 

i~,jl > 0  

for arbitrary {z i E C)i]>0, and ~ j K ( j ) =  0; see Ref. 14. One example is 
K = A, the finite difference Laplacean. 

Let ~ = (01 . . . . .  0N) ~ RN, with a priori distribution dUO. Let V/> 0 
be such that 

f e-v(14"l)evl'~12dg 0 < ~ for all y > 0 

The infrared bounds of Refs. 20 and 14 say that 

([~, (p)]2)c < _ [ f l /~(p) ] - i  forp  ~ 0 (6.9) 

for all a = 1 . . . . .  N. Note that for e > 0 (in a finite, periodic box, A) 

(I,~(p)12> c = ([,~(p)l 2) for a/> 2 (6.10) 

whereas 

(l~,,(p)l=7 = (l~,,(p)lz> + M(, ,  il)2[AIS0, p (6.11) 

with M(e,/3) = (01(0)). 
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Let I(v,K) = flpA<~d~pIs -'. For K =  A, - / s  = A(p )~p  2, so 
that I(2, A) = oo, but I0', A) < oo, for v > 3. 

By taking the thermodynamic limit (supposed to be ergodic) and 
integrating (6.10) and (6.11) we obtain from (6.9) 

(+~(0)25 < f l - l I (v ,K)  fora /> 2 (6.12) 

and 

(+1(0)25 ~< /~-II(v,K) + M(e, fl)2 (6.13) 

Next, we apply Theorem 6.3 with Dj = O/O+2(j), 
F =  A(p) = IAI -~/2 E eie'J+2(J) jEA 

By (6.6) and (6.8) and our choice of J(j), 

h(P)=-BK(P) + ( ~2V([~(O)[) 

Theorem 6.3 then gives 

(,+2(p),2)>.(a+2(O))h(p)-'-~+2(O) - h(p) -1 

= -flK(p)+(O2V['q~(O)[])} 3+2(0) 2 (6.14) 

Comparing this with (6.9) and (6.10) we conclude that 

( 02V[[~(0)[] ) /~ 0 3 + 2 ( 0 )  2 (6.15) 

This inequality is stable undertaking the thermodynamic limit. Now let 

_ o ]012 + const (6.16) v ( l r  = Xlq~[ 4 

Then 

Thus 

02V - 4Xq~ 2 + 8~+~ - o 

( O2V[ I~(0-----)l ] } = 4~[ (+1(0)2) + ~=2 (+a(0)2) ] 0+2(0)2 = 

+ 8X( ,2 (0 )  2) - 
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By (6.12) and (6.13) the right-hand side is bounded above by 4~M(e, 
fl)2 + 4(N + 2)hfl -lI(v,K) - o. This and (6.15) yield 

[ a -4 (N  + 2)Nfl-'l(v,K) 11/2 
M(c, fl) >1 4X 

l (o),/~ = ~  ~ - c o n s t B - I  (6.17) 

if I(v, K) is finite. As fi --~ ~ 

1 o )1/2 M(E, o~) ~> g ( 2  (6.18) 

The right-hand side of (6.18) is precisely the value of the spontaneous 
magnetization predicted by the naive Goldstone picture! 

These arguments can be extended in several ways. 
(A) Let V(]O[) be an arbitrary, positive polynomial. Applying 

Gaussian domination to bound (q~(0)2m) c by O(fl-'), provided I(v,K) 
< oo, see Refs. 20 and 14, we conclude that 

(02V('q~(0)') ) = f__V - ,  
0%(0)  2 0,/,g [ I ( M ( "  f l ) , 0  . . . . .  0) l]  - cons t  fi 

This and (6.15) generally give as a lower bound for M(e, fl) the smallest 
value predicted by the naive Goldstone picture, up to O( f l -  1) corrections. 

(B) Let v = 2, pass to the continuum limit and choose 

- K ( p )  - (p2) x, ~ < ;~ < 1 

Then 

- fpj ~. l a ~ n ( p ) - '  < o~ 

Let V([q~[) = ~ : (~.  q~)2 : _ �89 a : q~. ~:, where : - : is Wick order with respect 
to - ( i l K ) - 1 .  This defines a Euclidean field theory model which has been 
constructed and shown to exhibit spontaneous magnetization for suffi- 
ciently large fl in Ref. 42. The arguments described above can be applied to 
this model, with some obvious changes. The analog of (6.17) is 

l [ a + 3( fl) ] '/2 
M(e, /3) />  -~ X (6.19) 

for some 8(f l ) /> 0(!). Here we have used that a / 0 ~ ( 0 ) : q ~ ( 0 ) n : =  
n :~ (0 )n - l : ,  and ( :~(0)2: )  c < 0, for our choice of Wick order (see, e.g., 
Ref. 20). 

Thus, for a > 0 there is a nonzero spontaneous magnetization, in 
accordance with the Goldstone picture. 
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7. PHASE TRANSITIONS AND SPONTANEOUS ORIENTATION OF 
DIPOLES IN HARD CORE DIPOLE LATTICE GASES 

In this section we show that hard core dipole lattice gases in three or 
more dimensions undergo phase transitions (at small temperatures, as the 
dipole activity is varied), and we exhibit equilibrium states with spontane- 
ous orientation of dipoles and broken translational invariance, at small 
temperature and large activity. 

Our proofs of these results are based on reflection positivity (RP), 
established in Appendix A. We use RP as a means for establishing infrared 
bounds from which our results follow in a fairly standard fashion. ~2~ 

In the case of hard core dipole gases in two or more dimensions with 
the property that each dipole only has finitely many possible orientations 
one can combine RP with a Peierls argument ~5,14) to establish the results 
mentioned above. (We shall not give full details, which the reader can 
easily reconstruct from Refs. 5, 6, 14 and some hints that we shall sketch.) 

This section is organized as follows: in Section 7.1 we specify the 
dipole potentials and ensembles considered in the remainder and briefly 
review RP. 

In Section 7.2 we establish some important properties of dipole poten- 
tials and exhibit the ground states of dipole gases. In a sense Section 7.2 is 
the technical core of Section 7. It should be read after a first glance at the 
later sections. (We thank B. Simon for some hints concerning the material 
in Section 7.2.) 

In Section 7.3 we establish the required infrared bounds which, in 
Section 7.4, are applied to prove existence of a phase transition. (We note 
that for short range dipole potentials, one can use a high-temperature 
expansion to prove uniqueness for small ft. In the case of long-range 
potentials, inequalities of Section 2 give absence of ordering in the two- 
point function for activity z < 1 and uniqueness for z < /3  -~.) 

A few hints concerning the Peierls argument for two-dimensional, 
discrete dipole gases are given in Section 7.5. 

7.1. Dipole Ensembles and Reflection Positivity 

Reflection positivity O3'14) for Coulomb and dipole gases is established 
in Appendix A. Here we only recall the basic facts. We consider the 
following class of dipole gases: each site of 7/~ may either be empty or 
occupied by one dipole with some dipole moment q ~ R ~. The  a priori law 
of the dipole moment is given by a probability measure dp(q) on ~ .  The 
potential energy of a dipole at site i and one at site j is given by 

( qi, W (  i - j )qj)  (7.1) 
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where W(j)  is some p x ~ matrix whose general properties are discussed 
later, and qi,qj are in the support of dp. We have the following examples of 
dipole potentials, W, in mind. 

(a) Let e I . . . . .  e~ be unit lattice vectors in the direction of the 
coordinate axes. We define W(j), j ~ 7/~, by the equation 

( q, W(j)q ' )  = - (~3 q~q.C )(j) (7.2) 

where (~oF) ~- F(x + a) - F(x), and C is some potential on 

t . 0 = { j + q : j ~ , q E s u p p d o U { 0 ) )  

Later it will be necessary to constrain supp do to a hypercube centered at 0 
with sides parallel to the coordinate axes of length ~ 1. 

(b) Let @ = Xq/lq[,O < x < 1/2, and define W(j)  by 

( q, w(j)q') = - I q l  Iq'I(  o o,c )(J) (7.3) 

with C some potential on 

t-x= ( j  + a : j ~ T/~,[al = X} 

(c) 

W(j )  = [ W.v(j)  ]~,, =, (7.4) 

with W~v(j)= (O2/OxaOxvC)(j), where C is some potential on W. A 
typical example of a potential C is 

= I ( - - A +  E) - ' (x )  for Ix[ > 1 --2)t (7.5) C(x) 
l const for Ixl < 1 - 2X 

/> 0 , 0 < X <  1/2. 
Note that by adding a suitable bounded function g supported in 

{x :lxl < 1 - 2)Q one can achieve that (C + g)(x) is of positive type and 
regular near x = 0. Thus, the tools of Sections 2-6 are available (they are, 
however, quite inessential in this section). 

Henceforth we shall restrict our considerations to the dipole potentials 
introduced in (c) which are restrictions of regularized continuum dipole 
potentials to 77 ~. Our methods apply equally well to the sort of potential 
defined in (a) and (b) which we studied throughout most of Sections 5 and 
6. 

Let A be a periodic box in Z *, viewed as the restriction of a periodic 
box in W to Z", and let W A be an infrared regularized and periodized 
version of W on A, with W A ~ W, as AI"~ ~, e.g., in the quadratic form 
sense. If w is given in terms of a scalar potential C, as in (a)-(c), and C is 
given by (7.5) then C A = ( - h  A + CA) - l(X), where A A is the Laplacean with 
periodic boundary conditions at 8A, and {E A > 0} is a sequence of infrared 
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regulators. The details of how one chooses the periodic approximation, WA, 
to W are quite unimportant, but we shall require that the WA's be reflection 
positive; see inequality (7.13) below. 

The Hamilton function in the periodic box, A, is given by 

H A = ( f l / 2 )  ~, (q,, W A ( i ,  j)qj) 
i , j  ~ A 

=- ( f l /2)(q,  WAq) (7.6) 

The Gibbs expectations, ( . )  =-- ( . ) A ,  is given by the probability measure 

Z K le- lJ Adp( q) (7.7) 

with dp(q) = IIj  do(q), and Z A the obvious normalization factor. 
Next, we recall sufficient conditions on W or C which guarantee that 

the Gibbs state, ( . ) ,  is reflection positive. 04) 
For q E W, define 

R,~q = R,~(q ~ . . . .  , q,~, . . . .  q , )  = ( _  ql . . . . .  q~, . . . .  - q") (7.8) 

Let % be a pair of hyperplanes perpendicular to the a direction, midway in 
between two lattice planes and bisecting A into two pieces A+ and A_ of 
equal size. Let r~ denote reflection of sites in A at ~r~. Clearly r~A_ = A+. 
We define 

(Oaq)j= R,q~j (7.9) 

Let q+ = (~)j~A_." If A is a function of q+ we set 

(OoA)(q_) = A ({ 0 ~ } j ~ A  - ) (7.10) 

In the context of dipole gases the most natural definition of reflection 
positivity (RP) of a Gibbs state, ( . ) a ,  is as follows. 

Definition 7.1. The expectation ( �9 )A is said to satisfy RP iff, for an 
arbitrary function A of q+, 

(O~A(q_ )A(q+  ))A > 0 (7.11) 

for all a = 1 . . . . .  u. 
We now give a sufficient condition on W A and dp for (7.11) to hold. 

Propos i t |on  7.2. Let dp be chosen such that 

dp(R~q) = do(q) for all a (7.12) 

Let Q+ -- ( Qj)jEA+ be an arbitrary W-valued function on A+ (i.e., Qj = 0, 
for a l l j  ~ A ). Assume that 

- ~ ( Q i ,  W ( i -  r~j)R~Qj) >1 0 (7.13) 
l,j 

for all such Q +, all a = 1 . . . .  , v. Then ( . ) A  satisfies RP. 
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We do not give the proof of Proposition 7.2, which is an adaptation of 
arguments in Ref. 14, Section 3.D (see also Section 5 of Ref. 6). Instead, we 
now suppose that W is defined as in (7.2), (7.3), or (7.4). 

Let f be an arbitrary scalar function on 

A+ N t.p if W is as in (7.2) 

or on 

A+ A L x if Wis as in (7.3), (7.4) (7.14) 

(Note that A+ is, here, considered a subset of R~.) Let O'f(x) --f(Gx). 
In the following we usually suppress the subscript A, unless a specific 

context requires adding it. 

Proposition 7.3 [Reflection Positivity (RP)]. Suppose that W is 
defined as in (7.2), (7.3), or (7.4). Let C be of positive type, and 

c(,'ox, ro/) = C(x, y) 
(O~f, Cf) >1 0 (7.15) 

for all f ' s  as in (7.14), for all a = 1 . . . . .  , .  Then condition (7.13) of 
Proposition 7.2 holds, and < �9 ) is RP in the sense of Definition 7.1. 

The proof of Proposition 7.3 is given in Appendix A. [A direct 
verification of the fact that (7.15) implies (7.13) can also be found by 
modifying arguments in Section 5 of Ref. 6.] We emphasize that the 
hypotheses of Proposition 7.3 are satisfied for C as in (7.5). In the 
remainder of Section 7 we limit our attention to dipole potentials of the 
form specified in (c), (7.4), for some C satisfying (7.15). 

7.2. Properties of the Dipole Potential, Ground States of Dipole 
Gases 

Consider the p • v matrix W~(x) given by 

WL(x ) = -(a2/ax ax c)(x) for all x ~ N ~ (7.16) 

where C is a translation-invariant quadratic form, and C(x, y) -- C(x - y) 
is its integral kernel. We assume that the hypotheses of Proposition 7.3 (RP) 
are satisfied. 

For this it suffices, e.g., that, for Ix[ > 1 - 2h, 0 < h < 1/2, C(x) has a 
K/illen-Lehmann spectral representation, 

C(x) = f a ~ ( a ) ( - A  + a)-'(x) for Ixl > 1 - 2X (7.17) 

where d/~ is some measure on [0, oo) with f(a + 1)- ld/~(a) < oo, and h is the 
Laplacean with periodic boundary conditions at 0A. Then, for a suitable 
reflection-invariant continuation of C(x) to {x:lx[ < 1 -2X} conditions 
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(7.15) hold. Moreover, C(x) can be chosen to be of positive type. (All this is 
easy to check.) 

The Fourier transform of W~v(x) [see (7.16)] is 
A A 

W~ (k) = k,~kvC(k ) (7.18) 

with C(k) the Fourier transform of C. Let P(k) denote the orthogonal 
projection on k / t k l ,  i.e., 

P,~v(k) = Ik{- 2k,~kv (7.19) 

By (7.18) 

ifC(k) = 1)(k)P(k) with D(k)  = k2C(k) (7.20) 

Using the spectral representation (7.17), it is not hard to show that one can 
choose C such that 

(A) C satisfies (7.15), so that ( - )  satisfies RP, in the sense of 
Definition 7.1; 

(B) ~ (k )  > 0, for all k; 
(C) D(k) falls off rapidly, as [k[ ~ ce. 

Let W(j) be the restriction of W c to the lattice, i.e., j E 7/~. The Poisson 
summation formula expresses the Fourier transform of W in terms of i fc :  

i f ( k )  = ~ i f r  + 27rrn) 
m E ,  7/~ 

= ~ 19(k + 2~rn)P(k + 2rrm) (7.21) 
m ~ Z  ~ 

Let l be an arbitrary vector on the unit sphere, S "-l ,  of ~ .  Then there 
exists a sequence (rnr)r~=l C Z" such that 

k + 2rrm~ 
~ I as r---> 

Ik + 27rmrl 

To see this we propose to choose (mr} such that Im~[-~ oo, as r ~  ~ .  In this 
case 

12~rrn~l 
Ikl/Ik + 2#m~l~O and {k + 2~rmr I o l 

for all k E B, the first Brillouin zone (i.e., the dual of 7/~). Thus, it is enough 
to show that m~/Im~l~l, as r ~ o o .  This follows by an obvious density 
argument. Finally, since Xrn~/[Xmrl = mr~Iraqi, ;t = 1 , 2 , 3 , . . . ,  {mr} can 
clearly be chosen such that [rnrt ~ oo, as r ~ oe. This proves our contention. 
Next, we note that if (l~},~1 is a dense set of points on S ~-l, and {c~},~ 1 is 
a summable sequence of positive numbers then ~%P(l,) is a strictly 
positive ~ x v matrix. By condition (B), /)(k) is positive, for all k. 
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T h u s  

lPf(k) = ~] 19(k + 27rm)P ]k + 2~rm I 
m E ; Y  p 

is strictly positive, for all k E B. [In contrast, ff'C(k) = 1)(k)P(k) is singular 
for all k E W, p/> 2.] 

Next, we claim that ffZ(k) is independent of the way C(x) is re- 
gularized on {x :lxl < 1), up to a constant multiple of the identity. For, 
War(j ) = W~v(j), f o r j  ~ 7/" with Ijl :/:0. Moreover, since C(x) has been 
assumed to be symmetric under interchanging x a and x v, War(0 ) = c6~B, 
for some constant c/> 0. The Fourier transform of W~v(j ) (1-  6j,0) is 
clearly regularization independent, whereas the Fourier transform of 
W~v(0)~j, 0 is equal to c6~r. 

We are now going to choose c in a way that is convenient for our 
purposes. Let 

Then 

with 

k = (O,k 2 . . . . .  k~) (7.22) 

l~(k)  -- 
l~( ' ) (k)  

(7.23) 

A k = ~ (2qrm,)2C(k + 2rrm) (7.24) 
m @ Z  ~ 

To prove this we recall that 

lPgav(k) = ~ v(k a + 2~rm~)(k v + 2~rmv)C(k + 2~rm) 
m E ~  ~ 

F o r a = l  o r y =  l w e h a v e  

I~.v(k ) = ~ 2~rm,(k~ + 2~rm.)C(k + 2~rm) (7.25) 
mE7/"~ 

Since C is even, C(k + 2~rm) is even in m 1 for k as in (7.22) so that by 
(7.25) 

W~v(k ) = 0  for a =  1 or T =  1 and a v  a 

and Wll(k ) ~ A k is given by (7.24). Analogous statements hold when 1 is 
replaced by any a = 2 . . . .  , u. 

Next, let ~r (~) ~ B be the vector with components 

~ ~  = _ + ~ ( 1  - 8a~ ) 
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and set 
A = A ~  (7.26) 

(which is independent of a). Let 

ff '~ -- ff '(k) - A1 (7.27) 

if,0 is clearly regularization independent. 

For all k ~ B, l~~ 0, as a I, • u matrix. Lemma 7.4. 

Proof. Let 

R ( j )  =- f l  R j~ (7.28) 
ot=l 

where R~ is the involution ("dipole reflection") defined in (7.8). 
Let h be an W-valued function on the periodic box A. Let h+ = hXA+, 

where A_ are the two halves of A separated by the pair of hyperplanes ~r~, 
and XA~ the characteristic functions of A+. Let 0~ be defined as in (7.9). By 
inequality (7.13) we have the following Schwarz inequality: 

- ( h, W ~  ) = - ( h + , W ~  + ) - ( h , W ~  ) - ( h + , W ~  ) - ( h _  , W ~  + ) 

< - ( h + , W ~ 1 7 6  

q" 2[-(h+,W~ ,W~  )]1/2 

<<. - ( h + , W~ + ) - ( h + , W~ + ) 

- ( h _ ,  W~ ) - ( h_ ,  W~ ) 

= - [ � 8 9  +O,~h+,W(h+ +O,~h+)) 

+ (h_  + O,~h_, W ~  + O,h_ )) ] (7.29) 

If the sides of A have length 2% s~ = 1, 2, 3 . . . . .  a = 1 . . . .  , u, we may 
iterate inequality (7.29) for a new choice of ~r~ in both terms on the 
right-hand side of (7.29). Proceeding in this way, with all possible choices 
for ~r, and a, we arrive at the inequality 

1 (h(i) - (h, W~ < - ~  ~,  - , W~ ~o) (7.30) 
i~A 

where 

h(O(j) = R ( j -  i)h(i) (7.31) 

[If the lengths of the sides of A are even, but not powers of 2, (7.30) follows 
from (7.29) and an optimization argument of the sort used in Ref. 14, 
Section 3.] 
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We now show that each term on the right-hand side of (7.30) vanishes. 
This follows from 

W ~  i)R(i) = 0 (7.32) 
i E A  

This identity is proven by a computation: 

[ X W~ l -  i)R(i) 1 = ~, W~ l -  i)~yR(i)rr 
L i ~ A  AaV i ~ A  

= ~,, W~ - i),~v(- 1 ) . ~ "  
i E A  

= ( -  1)~, '~ W~ (7r(7))c~3' : 0 

with ~r (~) as in (7.26), by (7.28) and (7.27). Since this holds for all a and 7, 
(7.32) is proven. �9 

Remark. Identity (7.32) shows that any dipole configuration ~) de- 
fined by 

= R(j)q for some q ~ R (7.33) 

has vanishing energy density (with respect to the dipole potential W~ By 
Lemma 7.4, ~ is therefore a ground-state configuration. 

We now show that, in certain cases, the inequality of Lemma 7.4 can 
be improved. For this purpose one must first pass to the limit A = ZL Let 1 
be some unit vector in R ". Let We(m, k), k = (k 2 . . . . .  k,), be the partial 
Fourier transform of W~ with respect to (j2, . , . , j , ) ;  j l  ~ m E Z. 

We set 

Vk(m ) = -- (I, l~~ k)R,l) (7.34) 

Then inequality (7.13) or (7.15) clearly implies the following inequality for 
V: 

~M Vk(m + n - 1)z~ > 0 (7.35) 
m,n  >1 1 

for arbitrary (zm}~=l C C, i.e., V k is a translation-invariant: reflection- 
positive two-point function. Such two-point functions are known to have the 
following spectral representation: 

Vk(m ) =f~ido(Lk)~ I"1-1 for tm[ > 1 (7.36) 

See, e.g., Section 5 of Ref. 6, 
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The Fourier transform of Vk(m ) in m is therefore given by 

l'%k(kl) = c -b  2f_lldp(X,k)(cosk l _  - X)(1 + X 2 -  2Xcosk0  - l  (7.37) 

for some constant c = c k. (See Section 5 of Ref. 6, discussion of Model  5.3.) 
From (7.37) follow 

A A 

Vk(0 ) > Vk(k 0 for k~ v ~ 0 
A A 

Vk(k 0 > Vk(~r) for k~ v a - 7r (7.38) 

provided 

and 

Vk(m ) V a 0 for some Ira[ > 1 

Vk(m)--~ 0 as Iml~  oo (7.39) 

For Vk(m ) as defined in (7.34), (7.39) is checked easily. Thus, we have the 
following proposition. 

Proposition 7.5. (1) l ~ ~  l~~ (~)) = 0 [~r (~) as in  (7,26)], if 

k~ v a +_~r(1 - 8~) for some/~. (2) l~~ < l~~ . . . . .  O, _ ~r,O . . . .  ,0),  
if k~ ~ +_ rrS~, for some/~. 

Proof. By (7.38), (7.34) and the definition (7.8) of R 1, we have the 
following: 

(i) - l~l~ k) > - ffz~ k) for k 1 v a 0 
(ii) -2 ff '~ p k) > - ff'~ k) for k~ v ~ +_ 7r 

(iii) f f '~  I~~ k) f o r k l ~ 0  
(iv) * 0 ^ 0 W ~ ( k l , k  ) > W~, 0r, k) for k 1 4 = +qr 

Next, using first (i) and then (iv) with 1 and a interchanged, we see that 

l~~ k 2 . . . . .  k~ . . . . .  k~) 

>/ ff'~ k 2 , . . . ,  k . . . . . .  k,) 

/> l~~ k2 . . . . .  ~r . . . . .  k,) >/ . . -  

and if k~ v a +- ~r[1 - 81~], for some/z, at least one of the inequalities is strict, 
so that 

l~~ > 0 

and exchanging 1 and a, 

if k~ 4= +- ~[1 - 8~], for some #. 
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This proves (1). To prove (2) we apply (ii) and subsequently (iii) with 1 
and a interchanged. This gives 

l~~ < ~,V~ k 2 , . . . ,  k~ . . . . .  k~) 

~< W~ k 2 , . . . ,  0 . . . . .  k~) 

< . . .  < 0)  

and if k s V: -+ ~81~, for some/z,  at least one inequality is strict. �9 

W e  now cons ider  the specif ic  energy of  some periodic,  two- 
dimensional dipole configurations, arising in estimating contour  probabili- 
ties in a Peierls argument;  see Section 7.5. (The subsequent  inequalities 
extend to arbitrary dimensions, v > 2. In order to economize on notations 
we only consider v = 2.) 

(I) We  define a dipole configuration, qi, by  q0 (0 tl,0~, ,,(0 = ~ J 't(0,1) = ( -  1, 

0), (1"$); for general j E Z 2, let ~(i) be given by  consecutive reflections of 
( .(i)  .(i) ~ in lines parallel to the 1 and 2 axes (between sites), i.e., '/0 , '-/(0,1) ] 

q(I) = (1,0) if j2 is e v e n  (Jl42) 

q(I) - 0) if j2 is odd  (J~J2) = ( 1, 

Given an arbitrary pair (qo, q(o,o) of vectors in R 2, we set 

q(J,,/2) = R~'R~2qo for j2 = 4n - 1, 4n 

and 

q(J,,Jz) = R~ 'R~2-1q(o ,  1) for j2 = 4n + 1,4n + 2 

n ~ Z. The RZ-valued function, q, on 7/2 obtained in this way is called 
"periodic extension of (q0, q(0,O)'" 

(II) q(il) is defined as the periodic extension of 

q0 (H) - (1,0), ,,(H) = (1,0) (1'1') ~(oA) 

(III) q(m) is defined as the periodic extension of 

q(o III)= (1,0), "/(O,l)a(III) ____ (0, __+ l) (T(-- or 1"--)) 

(IV) q(iV) is obtained from 

q0 ('v) = (1, 0), .,(IV) = (0, 0)  ( ~ )  ~(o,D 

(V) q(V) is obtained from 

q(V) = (0, 1), .,(v) = (0,0) (--)O) ~/(o,l) 

(VI) Finally q(Vi) ~ 0 is  the periodic extension of 

q0 (v') = (0, 0)  = ( o o )  ~(0A) 
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We now introduce the specific energies e r, r = I . . . . .  VI, of these 
configurations: 

(r = lim 1 ~ (qi (0, W~ - j)~(~)) (7.40) 
AI"Z~ ~ i,j@A 

Proposition 7.5 has the following corollary. 

C o r o l l a ~  7.6. (1) (i ___ evi = 0; (2) d > 0, for r = II, III, IV, V. 

Proof. By Fourier transformation of the right-hand side of (7.40), 
(~ = fie~ ___ ~r)) = 0, E w = 0, because qV~ = 0. 

For  r = II, IV, V, the proof of (2) is a simple variant of the arguments 
used in the discussion of Model 5.3, Section 5 of Ref. (6): by Fourier 
transformation and the fact that q(~) is periodic, e~ is easily seen to be of 
the form 

Jr 
(~= ~ cfl~~ r = II, IV, V (7.41) 

j = l  

where ( r Jr r kj }j= 1 is a discrete set of momenta  in B, ~ > 0, for j = 1, . . . ,  Jr, 
and 

~ c f =  lim 1 A?;~ ~ ~-~ E [qirl 2 
iEA 

Suppose now that ~(k) is the Fourier transform of a (periodic) func- 
tion q on ~2. If ~2(k)= 0 and ~ l ( k ) ~  8 [ k -  (0, ___ ~r)] then q cc q(~). But 
q(r) 9~ q(I), r = II, IV, V. Thus there exists j0 such that suppO(r)(k)~ k~, 
and kj~ ~: (0, ___ 7r), for r = II, IV, V. By (7.41) and Lemma 7.4, 

and, by Proposition 7.5: the right-hand side is strictly positive. 
Next, we note that 

fie~ k2) ) = fie~ k2) ) = 0, -~r  < k 2 < r (7.42) 

We recall that the 1-component of q(iXi) is invariant under translation in 
the 1-direction. Thus, (7.42) implies 

l_l_ E (qi(llI))lwO,12(i--j)(q;III)) 2=0 
IAI i,jEA 

This and translation invariance of W ~ now imply (m = elv + ev which is 
strictly positive by that we have already proven. �9 

Corollary 7.6 is going to play an important  role in the estimation of 
contour probabilities in the Peierls argument; see Section 7.5. 

Next, we want  to determine the set S c B of momenta  ks such that 
ff'~ is singular, i.e., has at least one zero eigenvalue. A momen tum 
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k s ~ S is called a singular momentum.  Let [Tr (~)] be the set given by 7r (") 
and all its 2 ~- 1 _ 1 periodic images. 

B y  periodicity, /,f'~ = l~~ for all k E [~r(")]. Since 1~,~ 
= l~~ (")) = 0, 7 = 1 . . . .  , v, l, fz~ ) has a zero eigenvalue, for  all 
a = 1 . . . . .  p, i.e., 

6 [ ~r(")] C S (7.43) 
a = l  

We now pose the problem to show that 

6 [ ~T(~)] = S (7.44) 
and to determine the behavior of l'f/~ for k in the vicinity of [~r("b), for 
some a. We think that this problem can be solved for a very general class of 
dipole potentials obeying inequality (7.13) (i.e., reflection positivity). Unfor- 
tunately, the analysis in the general case appears to be rather subtle, and we 
therefore limit our considerations to a nearest-neighbor dipole potential. 

2 1/2 Let r = (x~ + �9 �9 �9 + x~) . For v > 2, the Coulomb potential is given 
by const r  -(~-2). We set C(x )=  r -(v-2), for r ~> l. Consider the dipole 
potential 

~)2 r - ( v - 2 )  WC~(x) = ax"ax~ 

= (v - 2) ~ - v(v - 2) r~/2 +x~xvi (7.45) 

The Coulomb potential is obviously a reflection positive two-point function 
[d/~(a) = 6o(a)da in (7.17)] and thus satisfies (7.15). Therefore the restric- 
tion of W ~ to W, W, satisfies (7.13). The proof of the following lemma is 
trivial. 

Lemma 7.7. Let W satisfy (7.13). Then W', defined by 

( W(j) ,  ,j[ < l ) 
w ' ( j )  = 0, Ijl > l 

satisfies (7.13). More generally, if V(j)  is an arbitrary reflection-positive 
two-point function then V', given by V'(j) = V(j), for [jl < 1, V'(j) = O, 
otherwise, is reflection positive, as well. 

Let e~ be the unit lattice vector in the a direction, and Peo the 
orthogonal projection onto e~. Then, for W c as in (7.45), 

W'(j )  = (v - 2)1 - v(v - 2) ~ j]v~o for [ j l  = 1, 

W'(0) cc 1 and W'( j )  = 0 for [j[ > I (7.46) 

By Lemma 7.7, W'  satisfies (7.13). 
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The Fourier transform of W' is given by 

l,f,"(k) = - [(v - 2)~(k) + c ] l  - 2v(~p - 2) ~ Peocosk,~ (7.47) 
or 

where ~(k) = 2[v - ~ =  l cos k J ,  c is some constant. Note that l'V'(k) is a 
diagonal matrix (in the obvious basis). We define 

l'V~ = l,V'(k) + [c + 2(v - 2)(3v - 2)11 (7.48) 

Then l'V~ (~)) = 0, so that our normalization condition is satisfied. 
The eigenvalues of l'l,'~ are given by 

~ ( k )  --- l'V~ = (v - 2)[6v - 4 - A(k) - 2v cosk~] (7.49) 

Equation (7.49) obviously shows that the only zeros of F,~ (k) are the points 
in [~r(~)]. Moreover, ~(~r (~)) = 4~,(v - 2) > 0, for/~ ~ a. Finally, 

~,~(k)/> 3(v - 2)dist(k, [~r(~)]) 2, 3 ~  1 

for k near one of the points in [~r(~)]. We summarize in the following 
lemma. 

I .emma 7.8. For 1'1 ,'~ as in (7.46)-(7.48), 

s - -  0 
Fork~S,~~ and "o -~ =~O(k)-I [W (k) ],~ is bounded uni- 
formly in the complement of any small, open neighborhood of [rr(~)]. 
Finally 0 < [ l~~  = l'V~ -~ < {3(v - 2)dist(k, [~r(")]) 2} -1, 3 ~ 1, 
for k near [Tr(~)]. 

For general dipole potentials, W~r = -32/3x'~OxrC, where C is given 
by (7.17) (with suppd/~ c_ {0} U [e, oo), e > 0) one can show without major 
efforts that 

IX,(k)O . - .  
lPV~ ~ h2(k)'' ' ... 

for some unitary matrix with the property that 

lira U ( k ),~, = 3,~ 
k-~[~r(")] 

lira U(k)r,~ = 3,~ 
k-~[~r(~)] 

lim X~(k) = 0 
k~[~r(~)] 

We make the following conjecture. 

0 U(k)* 
X (k) 

(7.50) 
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Conjecture 7.9. 
here, 

and 

for some finite c. 

For the general class of dipole potentials discussed 

s = 0 E~(~ 

0 < • . (k)- I  < e dist(k, [~(a)]) -2 (7.51) 

We remark that the gound-state configurations, q, of a dipole potential 
W ~ must satisfy 

supp ~ C S 

For the potential W ~ introduced in (7.46)-(7.48) or for some W ~ for which 
Conjecture 7.9 holds, supp ~" = [~r (")], if q is a ground-state configuration, 
i.e., q is given given by 

qj = R ( j )q ,  q E N~; see (7.33) 

The following is a portrait of a two-dimensional ground-state configura- 
tion: 

\ \ 
/ /  / /  

\ \ \  \ 
/ /  // 

\ \ 
In Sections 7.3-7.5 we show that under suitable conditions the order- 

ing persists at sufficiently small temperature and large activity. 

7.3. Infrared Bounds for Dipole Two-Point Functions 

We now return to the discussion of the dipole lattice gases specified in 
Eqs. (7.4), (7.6), and (7.7) of Section 7.1. We assume that the a priori 
distribution, do, of the dipole moment satisfies 

dp(R,~q) = do(q) for all a; see (7.12) 
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Moreover, W is supposed to be reflection positive in the sense of inequality 
(7.13). 

If we replace dp by 

dpo( q) =- e ~ ~/2)aq~dp( q) (7.52) 

and W by W ~ = W - AI, with A = A~o~ defined in (7.26), (7.27), the Gibbs 
expectation ( . ) ,  see (7.7), remains unchanged, Moreover, 

dpo( R,,q) = dpo(q ) 

/~~162 = 0 for all a (7.53) 

W~ - i )R( i )  = 0 
i ~ A  

where R( j )  -- ~ =  ~ R~-'; see (7.27), (7.28), and (7.32). 
Proposition 7.2 (reflection positivity of ( - )A) permits one to derive the 

usual chessboard estimate, see Refs. 16, 14, and 6, which, by a general 
argument (~a) yield the following theorem. 

Theorem 7.10 (Gaussian Domination). Let h be an arbitrary W- 
valued function on ~". Then 

(e-l~(q'W~ < e (B:/2)~h'W~ (7.54) 

Outl ine o f  Proof.  We temporarily assume that dpo(q ) = po(q)d"q, 
with P0 ~ L1(W) and Po(q) > 0, almost everywhere. We consider 

z (h) = f rl dPo(qi) (7.55) 
i~A 

Define Fh(q) = Po(q -- h)/oo(q). By a change of variables (q + h --) q) one 
gets 

Next notice that 

( O,~Fh )( qj) = eh( O,~qj ) = Vh( R,~q,, j ) 

= F&h(qr.j) (7.56) 

since, by (7.53), po(R,~q - h )=  Po(q - R,~h). The chessboard eslimate O4'6) 
thus gives 

A Fh,(q,)dpo(qi) 

iEA j ~ A  
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By reversing the change of variables in all terms on the right-hand side of 
(7.57) [qj-~ qj + R(j  - i)hi], we obtain from (7.55)-(7.57) 

ZA(h) < I-I ZA(h(')) 
l E A  

with h) i) = R( j  - i)hr The last identity in both (7.53) and (7.55) show that 

ZA(h(O ) = ZA(0 ) = Z A, so that 
ZA(h) <~ Zx 

This is a rewriting of (7.54). 
The case of an arbitrary measure dp0 obeying (7.53) follows from the 

special case treated above by a limiting argument. [] 

Next, we replace h by ~h in (7.54), expand both sides to second order 
in ~, subtract l, divide by c 2, and take ~$0. This yields (using the normaliza- 
tion condition for W ~ 

(l(q, W~ 2) < /3 -1( h, w ~ (7.58) 

Let S be the set of singular momenta of I'V ~ [i.e., l'V~ has zero 
eigenvalue for k s E S; see Section 7.2]. Let h be of the form 

h = ( W ~  

with supp ~ N S = 0. Then (7.58) yields 

(l(q, g)12) < /3 -1( g, (h 0)- lg) (7.59) 

Upon Fourier transforming both sides of (7.59) one finds the following. 

Corollary 7,11 (Infrared Bound) 

0 < Q(k) < /3 -~/~~ -~ for k ~ S (7.60) 

in the sense of an inequality between positive matrices. Here Q(k) is the 
matrix defined by 

0(k)~ = ( ~ ( k )  ~ ( k )  ) (7.61) 

It is standard to transfer (7.54) and (7.60) to the thermodynamic limit. 
For the nearest neighbor potential W' defined in Section 7.2, (7.46)- 

(7.48), and, more generally, for any reflection-positive dipole potential for 
which Conjecture 7.9 holds, we can sharpen Corollary 7.11 in the following 
way: by Lemma 7.8 (or Conjecture 7.9), it is enough that the function g in 
inequality (7.59) has the property that 

~ ( k )  = 0 for k E [Tr (~)] (7.62) 

Define a matrix-valued distribution, M(k), by 

M(k)~=~,~vm,~ ~ 8 ( k - p )  (7.63) 
p ~[M ~>] 
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with m~ >/0, for all a = 1 . . . . .  p. Then inequality (7.59) and (7.62) yield, 
after Fourier transformation, 

A 1 
0 < O_(k) < f l - lW~  + M(k)  (7.64) 

in the sense of inequalities between positive, matrix-valued distributions, in 
particular 

0 < (l~(k)12> < /3-II~r0(k)-l]aa"[-  m~ ~] 8 ( k - p )  (7.65) 
p E [qr<"> ] 

for some m. > 0. 
Fourier transformation of (7.65) shows that 

(q~qT) ~ me( -  1) ~oE J" (7.66) 

as IJl ~ ~ ,  i.e., ( . )  is not an extremal Gibbs state if m e > 0, for some 
a = 1 . . . . .  t,. In the last two sections we show that, under suitable assump- 
tions on W and dp, ~,,~= l rn~ > O, for [3 sufficiently large. We close by 
noticing that if ( . )  is the thermodynamic limit of states ( �9 )A which are 
symmetric under exchanging coordinate axes (i.e., A is a hypercube), then 
m 1 . . . . .  rn~, and ( �9 ) is a mixture of at least 2u extremal Gibbs states, 
( . ) (x ) ,  which break translation invariance and are characterized by 

(qj)(x) = R(j)q(X) (7.67) 

where (q(X) :X = 1 , . . . ,  2~ . . . .  ) are vectors obtained from some vector 
q(1) E R" by applying arbitrary rotations around the origin which leave the 
unit cube centered at the origin invariant. This follows from the assumed 
symmetry of ( . ) ,  by the general theory of decomposition into extremal 
states. 

7,4. Lower Bounds on (q~) 
In this section we establish uniform lower bounds on (q~) which we 

then exploit in conjunction with the basic infrared bound (7.64) of Section 
7.3 (and uniqueness for small fl or small activity) to complete the proof of 
existence of phase transitions at small temperatures, as the activity is 
varied, in 1, t> 3 dimensions. 

We follow the standard strategy. (2~ Consider the nearest-neighbor 
dipole potential W ~ defined by 

Y~ (~ - 2)1 - ~ (~  - a ) 2  

w ~  = 

for I j[  = 1 
(7.68) 

for IJt = 0 

otherwise 
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where p~o is the orthogonal projection onto a unit lattice vector, e~; see 
(7.46)-(7.48), Section 7.2. By the basic infrared bound, inequality (7.64) of 
Section 7.3, 

0 ~< (l~(k)l 2) = TrQ(k  ) < f l - l T r f f Z ~  TrM(k)  (7.69) 

with 

M(k),,v=8~vm ~ ~ 3 ( k - p )  
p e [~)] 

Integrating both sides of (7.69) in k over the first Brillouin zone yields 

0 < (qg) < B-1 d~kTr W~ + m, (7.70) 

For the potential W ~ specified in (7.68), we may apply Lemma 7.8, Section 
7.2 to estimate 

I(v, W ~ ==-f d~k Tr ffZ~ (7.71) 

That lemma shows that 

I(v, W ~ is finite for v > 3 (7.72) 

[We note that (7.69), (7.70), and (7.72) also hold for each dipole potential 
for which Conjecture 7.9 is true.] Thus 

0 < (q0 a) < fl -]I(v,  W ~ + M with M = k me (7.73) 
c t = l  

When v > 3 it suffices to prove, e.g., a uniform (in fl) lower bound on (qo 2) 
in order to show that the long-range order M is strictly positive. Let Xa be 
the characteristic function of (q ~ ~ :  [q[ < 8 ). By the chessboard estimate 
and the fact that ~ ( q )  = x~(R~q), for all a, we have 

(x~(q0)>A = ( IX X~(~)/~/~f 
X j @ A  / A 

j~A 

=-- mA(8, B) (7.74) 

Suppose now that 

lim ma(8, B) =- m(8, B) < 1 (7.75) 
A T Z "  

From (7.74) and (7.75) we get 

(q~} > 8211 - m(6, f l ) ]  > 0 (7.76) 
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In order to derive (7.75) we use the following estimates: 

H a =-( fl/2)(q, WAq ) = 2 (q(k),  l~A(k)q(k)) 
k 

~< sup It r~A(k)lt ~ I~(k)l ~ 
k k 

--II WAil ~ Iq;[ / 
i E A  

Similarly, 

Thus 

and 

~IA >~ --II WAlt ~, Iq, t 2 
i E A  

[ f e-"A II x~(qj)do(qj)]'/'Al 
j ~ A  

< fx~(q)e(~/2)"wA" rqt:ao(q) 

Z'/IAt >~fe-( fl/2) l]Wl] IqiZdp(q) 

Now, for all dipole potentials considered in this paper, 

iim II WAll =--[1WII < oo 

Thus 

(7.77) 

(7.78) 

• -' (7.79) 

For the potential W ~ defined in (7.68) this estimate can be improved: since 
ff'~ 0 (see Lemma 7.4), 

m(~,B)<[fx~(q)ao(q)][f~-(a/:'"w~ (7.80) 

and from Proposition 7.5, (2) and the fact that 1~ ~ is diagonal, 

II w~ = ~ o  [ ( . ,  0 . . . . .  0)] 

so that by (7.68), and (7.47), (7.48), 

11W~ = 8(u - 2)(v - 1) (7.81) 

Suitable hypotheses on dp together with (7.73), (7.76), (7.80), and (7.81) 
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suffice to show that 

M > ~ p ~ 2 1 1  - ~(a, ~)] - # - ~ I ( . ,  w ~ >0 

in the appropriate range of p's.  
We now consider an example of a distribution dp corresponding to a 

(Dhc) ensemble: 

no(q) = [ ~ ( q )  + ~8(tqt - O ) ]a~q 

Choosing 6 < Q we have 

(X* (q)do(q) = 1 

and 

where 

f e-(~/z)~lw~ > 1 + ze - ~  

/x = #(v, Q)  = 4 ( v -  2)(v ~ 1) Q2 

Thus 

M > Q2ze-Z~'(l + ze-t~') -~ -  f l - ' I ( v , W  ~ 

Thus, for z = Zo ebb', 

M > Q2z0(1 + z0) - 1 -  f l - ' I ( v , W  ~ > 0  

for 

fl > I(v, W~ + Zo)Z o 'Q -2 

Equivalently, if/3 > l(v, W~ -2 then 

- 1  

M > 0 for z 0 > [  Q2BI(v, W~ - ' -  1] 

(7.82) 

(7.83) 

(7.84) 

(7.85) 

(7.86) 

Since M = ~ = l m~, with m, > 0, for all a, M > 0 implies that m~ > 0, for 
at least one a. As remarked at the end of Section 7.3, there then exist at 
least 2v extremal Gibbs states, ( �9 )(x), with 

(qj)(~) = R(j)q(x) 

for some nonzero vectors q(X) E ~ ,  X = 1 . . . . .  2v . . . .  related to each 
other by sequences of 90 ~ rotations. We remark that the results proven in 
this and the last section for the nearest-neighbor dipole potential W ~ 
defined in (7.68) can be extended to all dipole potentials for which 
Conjecture 7.9 can be proven. 

Finally, we point out that for the nearest-neighbor dipole potential W ~ 
defined in (7.68) or (7.46)-(7.48) a standard high-temperature expansion 



690 Frohlleh and Spencer 

yields uniqueness and exponential clustering of ( . )  at small values of/3, 
for all z. If W is a lattice dipole potential of arbitrary range chosen such 
that l, lZ(k) is invertible for all k E B (see Section 7.2) we can use inequality 
(2.35), Section 2 to show that for z < 1 

Q_(k) < [ / 3 W ( k ) ] - '  

where 
A 

Q(k)~v= (~"(k)@V(k) ) 

This inequality (with the Riemann-Lebesque lemma) proves absence of 
long-range order in the two-point function, (q0qj), for all/3 and all z < 1. 
(The techniques of Section 5 may permit extending this to all z < e ~ 

7.5. Two-Dimensional Dipole Gases: The Peierls Argument 

In two dimensions the techniques of Sections 7.3 and 7.4 are certainly 
not applicable. However, for a very general class of dipole potentials 
satisfying reflection positivity [see (7.13) and (7.15) in Section 7.1] and 
discrete distribution do, e.g., 

dp(q) = (g0(q) + z l [8(q  - Qe,) + 8(q + Qel) t 

+z218(q - Qe2) + ~(q + Qez)]}dZq (7.87) 

one can use the Peierls chessboard method (see Refs. 5, 14, and 6) to 
establish ordering for sufficiently large fl, Zl, and z z. This method can be 
used in arbitrary dimension u > 2, as long as the symmetry group leaving 
d o invariant is discrete. This is of considerable interest as long as Conjec- 
ture 7.9 is unproven for long-range dipole potentials. We briefly sketch the 
method for u = 2 and d o as in (7.87). Details and generalizations to ~ > 2 
and a large class of d o are straightforward and can be inferred from the 
references quoted above. Let 

= [ 1 ,  q =  +_Qe 1 (i.e.,q=1"or$) 
x~ 

a [ 0  otherwise 

= [1, q =  +Qe 2 ( i . e . , q = - - > o r ~ )  
x ,  

i [ 0 otherwise 

1, q - - 0  (i.e., q = O) 

X0= 0 otherwise 

Where convenient we identify {0, u, d, r, l } with {0, 1, 2, 3, 4}. We define 

P,(j) = x~[ R(j)qj]  
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with R( j )=  1-I~=]R j`, and R~ as in (7.8), Section 7.1. One then checks, 
using (7.9) and (7.10), of Section 7.1, 

O~P~(j) = P~(r~j) (7.88) 

for all s and all a = 1 . . . . .  v. For dp given by (7.87) 

Po(j) + Pu(J) + Pa(J) + P~(J) + Pt(J) = 1 (7.89) 

for a l l j  E 2[ 2. 
We choose W to be a general, reflection-positive dipole potential of the 

type studied in Section 7.2 for which, in particular, Corollary 7.6 of Section 
7.2 is valid. We then choose ( . )  to be a some limit of a sequence of 
periodic states, ( . )A"  These states (and thus any limit) satisfy reflection 
positivity (see Propositions 7.2 and 7.3 of Section 7.1), permitting the 
application of the chessboard estimates, 04) and are symmetric under ex- 
changing u with d and r with l. Thus we have 

(P~(j)) = (Pa(j)),  (P~(j)) = (Pl( j ) )  for al l j  

Furthermore 

(P , ( j ) )  >1 (Pr(j))  for z, >/ z 2 

Thus 

(P~ ( j ))  = (Pa (J)) > ~ (1 - (P0)) (7.90) 

In order to prove that ( . )  violates clustering (i.e., is not extremal), we 
propose to show that 

(P,(O)Pu(j)) <-< e -~:~ for al l j  (7.91) 

and 

(P0) < e-K'~ (7.92) 

for some positive constants K and K '  and all ]3. Obviously, (7.90)-(7.92) 
prove that for /3 large enough (Pu(O)Pa(j))~(Pu)(Pd), as Ijl~ oo. By 
(7.88) and the chessboard estimate, 

/ ~ I/IAI 
(Po) <<- lira ( I-[ Po(J)) = lim (ZA) -l/lal 

A'[ '~ 2 ~ j E A A A'~2~2 

N o w  Z A > zle -BQ2`~IAI, where c I is the ground state energy defined in (7.40), 
Section 7.2. We choose z I such that 

z,e -B'~r = e K'~, i.e., ]3/~1 ~ logz~ = ]3(K' + ~IQ2) (7.93) 

This yields (7.92). 
To prove (7.91) we apply the standard Peierls argument: by (7.89), 
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where f~ is an arbitrary, bounded square in )7 2, containing 0 and j .  The 
right-hand side is then expanded and resummed, using 0 < P~ (j) < 1, for 
all a and j .  This yields, after taking f~1"772, 

(P:(O)Pd(J)) <<-~( I'[ P~(i)P~,(i')) 
Y (i,i')Ey 

where 7 labels an arbitrary contour Y c Z2 consisting of finitely many pairs 
of nearest neighbors (i,i') separating 0 from j.  (See Refs. 5 and 14 for 
precise definitions.) Here 

a = a '  = 0 or a =/= a'  for all (i, i') (7.94) 

Applying the chessboard estimate to the right-hand side as in Ref. 14, using 
(7.88) we obtain the upper bound 

(Pu(O)Pa(J)) <<, ~v max lim ( II P~(i)P~,(i') ) ~ '/21A' (7.95) a,a' A~2~2 \ ( / , / ' ) c A  

where a and a '  are as in (7.94), the product on the right-hand side of (7.95) 
extends over all "horizontal" nearest-neighbor pairs, with a, a '  depending 
only on ( - 1 )  i2, and 171 is the number of pairs in Y. Each term under the 
sum on the right-hand side of (7.95) is a thermodynamic quantity that can 
be estimated explicitly. One sees by inspection that 

lim ( /-I P:(i)P:,(i'))~I/2[AI~< (F~=,) Irl (7.96) 
AI"Z 2 (i,i') C A 

with Foo = z~-1/2, and 

F~, ~< exp [ - / 3 /4 ( c  r(a,a') - -E 1) Q 2] for a ~ a'  

where the energy densities C, r = I . . . . .  VI are defined in (I)-(VI) and 
(7.40) of Section 7.2. When a-J = a', r(a,a')E {II, III, IV, V}. By Corollary 
7.6 of Section 7.2, 

Thus 

e r _ ~I > 0 for r = II, III, IV, V 

maxF~,  < e -g't3 (7.97) 

for some constant K" > 0, and a, a '  as in (7.94). The main inequality (7.91) 
follows from (7.95)-(7.97), by the usual combinatorial arguments; see, e.g., 
Refs. 5, 14. 

This completes the proof that ( �9 ) violates clustering for large/3. 
We emphasize that the range of the dipole potential W is arbitrary, 

and that only the discrete nature of dp [not the explicit choice (7.87)] was 
important, throughout Section 7.5. 
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APPENDIX A. REFLECTION POSITIVITY (RP) 

This appendix briefly reviews reflection positivity for monopole and 
dipole gases in both the q and q representations. We assume the reader has 
some familiarity with reflection positivity as developed in Refs. 13 and 14. 

Let L o be the hyperplane x ~  1/2 lying between the points of the 
lattice t. = Z ~ and define r to be reflection through L o. We set 

L+ = { X E L  :x ~ 1) 

L_ = ( x  ~ t .  :x~ < O) 

and denote by ~_+ functions of (O(x))xeL+. 

Definition A.1. A quadratic form C on 12(L) is called reflection posi- 
tive (RP) if C(x, y)  = C(rx, ry) and 

(Of, Cf)12(,) > O, supp f C L+ 

where 

(Of)(x) = f ( rx )  

By general properties of Gaussian measures (15) we have the following 
proposition. 

Proposition A.1. 

where 

If C is RP then for A E g+ 

(OAA)~  c >>. 0 

(OA){ O(x) ) = A ( O(rx) ) 

Remark.  For C =  fl(--A + 0 -1, Proposition A.1 follows from the 
fact that exp [ - (1 /2 f i ) (0 -  0') 2] is the kernel of a positive operator corre- 
sponding to the transfer matrix. 

Corollary A.2. For the monopole gas ensemble (Mg) with F satisfy- 
ing the neutrality condition 

d?~( q) -- d?~(- q) and A = r A  

we have 

( OA A)A( B; F)  >> 0 
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ProoF. Let F A = IljeaF[q,(j)] and let A+ = A n L+. Since F is real 
and F A = FA+ F A ,  with FA_ = O(FA+), 

( 0--AA )A ( r ;  F )  = ( FA)-  l ( 0(A--F A+ )(AFA+ ) >/~c 

By Proposition A. 1 both factors on the right are positive. [] 

Remark. Suppose that the limiting state, 

( . ) ( / 3 ;  F )  = lim (-)A(/3; F )  
A~_ 

A = r A  

is translation invariant (see the remarks after Theorem 2.4). Then it admits 
a positive semidefinite transfer matrix, T,. See Refs. 13 and 14. 

Define a scalar product on the space, go, of functions A , B  . . . .  of 
( O ( X ) ; X  "~- (X l . . . . .  X p) E L ,  X 1 ----- O) by 

<A,B)  = <AB>(/3; F) 

Let B x be the translate of B by the vector x ~ L. Then for A, B in go 
x I ] 

(XB~>(fl ;F)  = (A , (T , )  I B(o,x: . . . . . .  ~)) (A.1) 

Let e be a unit vector in an arbitrary direction of L, e.g., the x 1 direction, 
and let A E g0- It then follows from (A.1) and the positivity of T o that 

<.4A,,e) (/3; F )  = (XAt,le>(/3; F )  (h.2) 

and 

<AA,,e) (/3; F)  is convex on n = 0, 1, 2 . . . .  (a.3) 

This is applied in Section 4. 
Next, we reformulate Corollary A.2 in the q representation. Let q+ 

= (q~:x EL_+ NA}, and define 

(OqL = - qr~ 

(OA)( q,:) = A ( -qrx )  (A.4) 

Corollary A.3. Consider the monopole gas ensemble. Assume that C 
is RP, dh(q) = d X ( -  q) and A = rA. For an arbitrary function A (q + ) we 
have 

< OAA>A( f l ;F ) > 0 

Proof. This may be seen by applying Corollary A.2 to the function 

A(,+ ) - f  at,(q+ ) II eiqxq'(x) ~ 1::+ 
x ~ L +  
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where dP is an arbitrary, complex measure on R tL+ I. The sign change in Oq 
[right-hand side of (A.4)] comes from complex conjugation. 

By general arguments (13'14) there exists then a self-adjoint transfer 
matrix, Tq. One can deduce from (A.3), (A.4), and (2.29) that Tq is not 
positive, in contrast to the transfer matrix, T~,, of the monopole gas in the 
representation. See Section 4. 

We now turn to the discussion of RP for the dipole gas in the (Dg) 
ensemble. 

Let ~ be the Gaussian process over R ~ with mean 0 and covariance tiC. 
Let t. = L7/p be the simple cubic lattice of mesh L ( =  1, 2, 3 . . . .  ). 

We define R~ = { x ~ ~ : x ~ ~_ 0}. Let O0 be a finite, closed set of 1 

points contained in a square with sides of length < L parallel to the axes 
of L, centered at the origin 0 E L. 

(A.5) 

The translate of Oo to a site x ~ t is denoted Ox. We define 

o_+= U ox 

*o+ = ( f  : supp f C_ 0 + } (A.6) 

and 

go,+, the functions of (~,(x))xEo,+, 

Def in i t ion  A.2, A quadratic form C on L2(• p) is said to be 0 +-RP 
iff C(x, y)  = C(rx, ry), for all x, y in 0 +, and 

(eft, Cf) >1 0 for all g ~ ~o+ (A.7) 

Examples  
(1) Clearly C = (--A + c) -1 is O+-RP. 
(2) Let d = dist(O +, O_ ). By (A.5), d > 0. Define C'(x - y)  by 

= f in t eg ra lke rne lo f  ( _ A  + Q-1 if I x - y l / >  d 

C'(x  - y)  L g(x  - y)  if I x - y l < d  
(A.8) 

for an arbitrary function g. 
Then C' is O+-RP. Theproofis  as follows: 

(Of, C~f) = (Of, Cf) for al ly ~ ~o§ 

because C'(x - y)  = C(x - y)  when Ix - yl > d, and dist(supp f, supp Of) 
/> dist(O +, O _ ) = d. 
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(3) Let C = ( - A  + e)-1, where A is the finite difference Laplacean on 
12(Z"), and let O0 be an arbitrary subset of sites in 71 ~ of distance < (L /2 )  to 
0. Then C is O +-RP. 

(A general way of constructing 0 +-RP C's can be inferred from Ref. 
14.) 

We now recall the definition (2.25), (2.26) of the (Dg) ensemble: we 
choose F of the form 

F(eOx) = f dX(q)ei(Sq ~')(x) ~ t:-o~ (A.9) 

see (A.6). 
For 8p as in (2.24), (A.9) holds if 

suppd?~ C_ Oo, e.g., suppdX C_ (q : lq[ "<< t / 2 } .  (m.10) 

In accordance with (2.24), (2.25), and Proposition A.1 we define 

0 (e  i(Sq40(x)) = e i(Sgq~)(rx) (A. I 1) 

where, for q = (qO, q] . . . .  , q . - l ) ,  

R q  = (qO, _ q l ,  . . . , _ q ~ - l )  (A.12) 

Moreover 
(Oq)x= Rqr x (A.13) 

That this definition of the reflection of dipole moments is the right one can 
be understood by viewing a dipole as two oppositely charged monopoles 
and then applying (A.4) (Fig. 1). 

We now suppose that 

d ~ ( q )  = d X ( R q )  (A.14) 

which is again some sort of neutrality condition. Assuming (A.9), (A.11), 
and (A. 14) we find 

(OF)(q~)  = F(t)rx ) (A. 15) 

for all x ~ t_+. 
Using Proposition A. 1 and (A.15) we conclude the following. 

8 
m o n o p o l e  

x 

G 
rE  

L 
o 

e d i p o l e  

, t i "  ~ 
xOq 

i 
rx ~ rq 

L 
- o 

Fig. I 
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Corollary A,4. Assume (A.9), (A.11), and (A.14). Suppose 
A = rA is reflection invariant. Then for all A E ~o+ 

( epA A)A( fl; F)  >1 0 

697 

that 

Remark. We note that Corollary A.4 remains true for the (Dnhc) 
and the (Dhc) ensembles with L = Z ~, (9+ = L+, and (dqep)(x) = (~(x + q) - 
~(x), where q is an arbitrary lattice unit vector, and d~ obeys (A.14). The 
proof follows from the fact that exp[z c o s ( ~ -  ~')] or 1 + z cos(q~- ~'), 
z > 0, are obviously the integral kernels of positive quadratic forms (the 
Fourier transforms of exp z cos 0 and 1 + z cos q~ are nonnegative), by the 
arguments used in Ref. 16. 

Next, let A be a function of q +, where 

q_+ = {qx E suppd~}x~L+ (A.16) 

We define 

(OA)(q_ ) = A(Oq_ ) (A.17) 

Mimicking the arguments used to prove Corollary A.3--mutatis  mutandis-- 
and (A.13), (A.17) we get 

Corollaw A.5. Under the hypotheses of Corollary A.4, 

(0.4 .A)A( f l ;F  ) >/0 

for arbitrary functions A only depending on q+. 

Further discussion and important applications of Corollary A.5 (in- 
frared bounds and existence of phase transitions) can be found in Section 
7. 

APPENDIX B. COMPLEX TRANSLATIONS AND ELECTROSTATICS 

Let Y be a connected, bounded region in 7/~ and O some charge density 
inside Y, such that 

dist(supp p, OY.) > 0 

Let 

Cp(x) = ~] C(x  - y )p(y)  (B.1) 

Notice that Cp is linear in p. 
We now look for a charge density e -- o o on ~E with the property that 

Cp(x) = Co(x) for x ~ OY U YY (B.2) 

with 8E the boundary and YY the complement of X. If (B.2) holds then, by 
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linearity, 

Moreover, 

co(x ) - co(x)= c~_o(x)= o 

( -  Aco_o)(x) = o(x) 

Fr6hllch and Spencer 

for x E ~X U X c (B.3) 

for x ~ ON (B.4) 

o(x) = (AcD)(x) = E C~ > 0 (B.8) 
{ j  : I J - -  xl = 1 ) 

By the lattice version of Gauss' theorem, 

o(x) = ~,, o (x )=  ~.~ p(x) (B.9) 
x E E  x E ~ E  x E E  

Thus, combining (B.8) and (B.9) and using linearity, i.e., 

we find 

O p l ~ -  - . ,  +t0n = O p l  @ �9 �9 �9 -]-  I~'IO n 

la(x)l< 2 2 I~ios,(x)l 
x ~ a E  x ~ a E  y@E 

= ~ IP(Y)t (B.ll) 
yEE 

(B.IO) 

Cf(x) > 0 if p > 0 (B.7) 

because C~ y) >1 0 and p(y) > 0. Moreover C~ = 0 for x E ~X U X c. 
Thus 

Next, notice that 

since a(x) = 0, for x $ OZ. 
Thus Cp_, is the potential created by p with 0-Dirichlet data at OX, 

i.e., 

cio_o(X)- Cf(x) = E C~ y)o(y) (B.5) 
y ~ X  

where C ~ is the Green's function of - A  with 0-Dirichlet data at OR. By 
applying the Laplacean with free boundary conditions to both sides of this 
equation we find 

( -  AC~_o)(x) = - o (x)  = ( -  ACf ) (x ) ,  x e 0Z 

i.e., 

a(x) = (hcD)(x) for x e ~Y~ (B.6) 
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Next, we compute electrostatic energies. We set 

E o = �89 ~ O(x)C(x  - Y)O(Y) 
x,y 

= �89 ~ p ( ~ ) C o ( x )  
X 

= ~ E (-~co)(x)C,(x)  
X 

= �89 ~'~ (~7 Co)2(x) (B.12) 
X 

For the purpose of renormalizing the activity of small dipoles we wish to 
compute Ep - E o .  Using (B. 12) and summation by parts we find 

Ep - Eo = ~EV(C  o + C o ) ( x ) V ( G  - Co)(X) 

= l y [ 0 ( x )  + o(x)]Co_o(x) 

= ~o(x )G_o(X ) (B.13) 

and we have used (B.1) and (B.3). Thus 

E~- Eo > e.-�89 

> E ~  yeay.max � 8 9  y ) [ ( : ~  ]O(Z)[) (B.14) 

which follows from (B.11). 
We now show how these considerations can be applied to renormalize 

the fugacity of isolated dipoles. We note that, for arbitrary p, 

so that 

(e/*(P) )pc 

( e iqJ( rr) ) B c 

(eiq'(~ )Bc = e-Be .  

m a x  < e-PEPexp{ 2 yeaY~ x 

Now let p be the charge density of an isolated dipole moment r located at 
the origin of 2[ 2 , i.e., 

p(y)  -- 6 (y)  - 6 ( y  - r) (B.16) 

Choose for Y., e.g., a sphereical region centered at the point r /2  of mean 
radius [r[. Then 

(i) Ep = - C(0, r) ~ (1/2~r)log[r[ 
(ii) Zip(x)[ -- 2 

(iii) max [ Z p ( x ) C ( x - y ) [  < K 
y~aE 
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for some cons tan t  K independen t  of Ir[. Thus  

(eiq'(P))l~C <. e x p [ - - ( f l / 2 ~ r ) l o g l r  i + f ig]  (B.I7)  
exp fl[ E p -  Eo] - (eiq'(cr))flc 

By construct ion,  see (B.2), Cp(x) = Co(x ), for x E OY. tO Z c. Moreover ,  the 
d ipole  is isolated, in the sense that  there is no other  d ipole  inside Y. 
Therefore  we m a y  replace  

1 + z cos(Sr~)(0 ) ~ 1 + z c o s ~ ( p )  

by  

1 + ~ cos ~(o) ,  with o suppor t ed  on 3Z, 

y ,  a ( x )  = 0, ~ Io(x) l  < 2, (B.18) 
xE~Z x~0E 

and  ~ < z e x p [ - ( f l / 2 ~ r ) l o g t r  [ + ilK] 

W e  have  found  a purely electrostatic subst i tute  for the technique used to 
prove  Lemmas  5.3 and  5.4. 

NOTE ADDED IN PROOF 

The  authors  have  r igorously  es tabl ished a phase  t rans i t ion  for the 
two-d imens iona l  C o u l o m b  gas a n d  p lane  ro ta tor  a long the lines ind ica ted  
in Section 5. Deta i ls  will appea r  elsewhere. 
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